Respuesta :
Answer:
hello your question is incomplete attached below is the missing part and also attached is the solution
answer: a) 0.4801
b) 5.398 kw
c) 2.14
d) 12.72
Explanation:
The quality of the refrigerant at the evaporator inlet
h4 = hf4 + x4(hfx4)
Refrigeration load
Ql = m(h1-h4)
COP of the refrigerator
Ql / m(h2-h1) - Qm
Theoretical maximum refrigeration load
( Ql )max = COPr.rev * [m(h2-h1) - Qin]
The quality that will exist at the inlet of the refrigerant's evaporator would be:
a). [tex]0.4801[/tex]
The load of the refrigeration would be
b). [tex]5.398 kW[/tex]
The refrigerator's COP would be:
c). [tex]2.14[/tex]
The maximum refrigeration load would be as follows:
d) [tex]12.72[/tex]
a). The determination of the quality of the refrigerant at the inlet of the evaporator would be:
[tex]h4 = hf_{4} + x_{4}(hfx_{4})[/tex]
As given,
[tex]hf_{4}[/tex] [tex]= 3.841[/tex]
[tex]hf_{2,4}[/tex][tex]= 223.95[/tex]
[tex]h_{4} = 111.37[/tex]
Now,
solving for [tex]x_{4}[/tex] [tex]= (111.37 - 3.841)/223.95[/tex]
[tex]= 0.4801[/tex]
b). Refrigeration load
[tex]Q_{l}[/tex] [tex]= m(h_{1} - h_{4})[/tex]
[tex]= 0.0455(230.01-111.37)[/tex]
[tex]= 5.398 kW[/tex]
c). COP of the refrigerator
[tex]Q_{l}[/tex]/[tex]m(h_{2} - h_{1}) - Q_{m}[/tex]
by putting the values, we get
∵ COP [tex]= 2.14[/tex]
d). Theoretical maximum refrigeration load
[tex](Q_{l})[/tex]max [tex]= COPr.rev[/tex] × [tex]{m(h_{2} - h_{1}) - Q_{in}[/tex]
by putting the values, we get
∵ [tex]Q_{L}max = 12.72[/tex]
Learn more about "Compressor" here:
brainly.com/question/9131351