Answer:
The volume of the solid = 1444
Step-by-step explanation:
Given that:
The region of the solid is bounded by the curves [tex]y = 38 \sqrt{cos \ x}[/tex] and the axis on [tex][-\dfrac{\pi}{2}, \dfrac{\pi}{2}][/tex]
using the slicing method
Let say the solid object extends from a to b and the cross-section of the solid perpendicular to the x-axis has an area expressed by function A.
Then, the volume of the solid is ;
[tex]V = \int ^b_a \ A(x) \ dx[/tex]
However, each perpendicular slice is an isosceles leg on the xy-plane and vertical leg above the x-axis
Then, the area of the perpendicular slice at a point [tex]x \ \epsilon \ [-\dfrac{\pi}{2},\dfrac{\pi}{2}][/tex] is:
[tex]A(x) =\dfrac{1}{2} \times b \times h[/tex]
[tex]A(x) =\dfrac{1}{2} \times(38 \sqrt{cos \ x})^2[/tex]
[tex]A(x) =\dfrac{1444}{2} \ cos \ x[/tex]
[tex]A(x) =722 \ cos \ x[/tex]
Applying the general slicing method ;
[tex]V = \int ^b_a \ A(x) \ dx \\ \\ V = \int ^{\dfrac{\pi}{2} }_{-\dfrac{\pi}{2}} (722 \ cos x) \ dx \\ \\ V = 722 \int ^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}} cosx \dx[/tex]
[tex]V = 722 [ sin \ x ] ^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}[/tex]
[tex]V = 722 [sin \dfrac{\pi}{2} - sin (-\dfrac{\pi}{2})][/tex]
[tex]V = 722 [sin \dfrac{\pi}{2} + sin \dfrac{\pi}{2})][/tex]
[tex]V = 722 [1+1][/tex]
[tex]V = 722 [2][/tex]
V = 1444
∴ The volume of the solid = 1444