Respuesta :

Given :

Two points [tex]P_1(-2,3,2)\ and\ P_2(1,2,0)[/tex] .

To Find :

The direction of [tex]P_1P_2[/tex] and midpoint of line segment [tex]P_1P_2[/tex] .  

Solution :

Direction of [tex]P_1[/tex] and [tex]P_2[/tex] is given by :

[tex]\vec{D}=\dfrac{P_2-P_1}{|P_2-P_1|}\\\\\vec{D}=\dfrac{(-2i+3j+2k)-(i+2j+0)}{P_2-P_1}\\\\\vec{D}=\dfrac{-3i+j+2k}{\sqrt{3^2+1^2+2^2}}\\\\\vec{D}=\dfrac{-3i+j+2k}{\sqrt{14}}[/tex]

Now , mid point is given by :

[tex]M(\dfrac{-2+1}{2},\dfrac{3+2}{2},\dfrac{2+0}{2})\\\\M(\dfrac{-1}{2},\dfrac{5}{2},1)[/tex]

Hence , this is the required solution .

ACCESS MORE
EDU ACCESS
Universidad de Mexico