Respuesta :

Answer:

Average velocity of the function over the given interval

              =  [tex]log(\frac{7}{4} ) -2[/tex]

Step-by-step explanation:

Explanation:-

Given function y = 3/x -2 ...(i)

The average velocity of the function over the given interval

             Average velocity  = [tex]\frac{1}{b-a} \int\limits^b_a {(\frac{3}{x} -2)} \, dx[/tex]

                               =    [tex]\frac{1}{7-4} \int\limits^7_4 {(\frac{3}{x} -2)} \, dx[/tex]

now integrating

                           =   [tex]\frac{1}{3}( \int\limits^7_4 {(\frac{3}{x} )} \, dx-2\int\limits^7_4 {1} \, dx )[/tex]

                           = [tex]\frac{1}{3} (3 (log x) - 2 x )_{4} ^{7}[/tex]

                        =   [tex]\frac{1}{3}( (3 (log 7) - 14 )-(3 log 4 -8))[/tex]

by using formulas

                 log a-log b = log(a/b)

  on simplification , we get                  

                 = [tex]\frac{1}{3}( (3 (log 7) -3 log 4 ) - \frac{1}{3} (6)[/tex]

                = [tex]log(\frac{7}{4} ) -2[/tex]

Average velocity of the function over the given interval

              =  [tex]log(\frac{7}{4} ) -2[/tex]

 

 

RELAXING NOICE
Relax