Respuesta :
Answer:
a. No solution, parallel lines.
b. One solution.
Step-by-step explanation:
Given the system of equations:
a. [tex]2x-4y=12[/tex]
[tex]-3x+6y=-15[/tex]
b. [tex]2x-4y=12[/tex]
[tex]-5x+3y=10[/tex]
To give a geometric description of the given system of equations.
The geometric description of a system of equations in 2 variables mean the system of equations will represent the number of lines equal to the number of equations in the system given.
i.e.
Number of planes = Number of variables
Number of lines = Number of equations in the system.
Here, we are given 2 variables and 2 equation in each system.
So, they can be represented in the xy-coordinates plane.
And the number of solutions to the system depends on the following condition.
Let the system of equations be:
[tex]A_1x+B_1y+C_1=0\\A_2x+B_2y+C_2=0[/tex]
1. One solution:
There will be one solution to the system of equations, If we have:
[tex]\dfrac{A_1}{A_2}\neq\dfrac{B_1}{B_2}[/tex]
2. Infinitely Many Solutions: (Identical lines in the system)
[tex]\dfrac{A_1}{A_2}=\dfrac{B_1}{B_2}= \dfrac{C_1}{C_2}[/tex]
3. No Solution:(Parallel lines)
[tex]\dfrac{A_1}{A_2}=\dfrac{B_1}{B_2}\neq\dfrac{C_1}{C_2}[/tex]
Now, let us discuss the system of equations one by one:
a. [tex]2x-4y=12[/tex] OR [tex]2x-4y-12=0[/tex]
[tex]-3x+6y=-15[/tex] OR [tex]-3x+6y+15=0[/tex]
[tex]A_1 = 2, B_1 = -4, C_1 = -12\\A_2 = -3, B_2 = 6, C_2= 15[/tex]
Here, the ratio:
[tex]\dfrac{A_1}{A_2}=\dfrac{B_1}{B_2} = -\dfrac{2}{3}\\\dfrac{C_1}{C_2} = -\dfrac{4}{5}[/tex]
[tex]\dfrac{A_1}{A_2}=\dfrac{B_1}{B_2}\neq\dfrac{C_1}{C_2}[/tex]
Therefore, no solution i.e. parallel lines.
b. [tex]2x-4y=12[/tex] OR [tex]2x-4y-12=0[/tex]
[tex]-5x+3y=10[/tex] OR [tex]-5x+3y-10=0[/tex]
[tex]A_1 = 2, B_1 = -4, C_1 = -12\\A_2 = -5, B_2 = 3, C_2 = -10[/tex]
[tex]\dfrac{A_1}{A_2}= -\dfrac{2}{5}\\\dfrac{B_1}{B_2} = -\dfrac{4}{3}\\\dfrac{C_1}{C_2} = -\dfrac{6}{5}[/tex]
[tex]\dfrac{A_1}{A_2}\neq\dfrac{B_1}{B_2}[/tex]
So, one solution.
Kindly refer to the images attached for the graphical representation of the given system of equations.

