Respuesta :
Answer:
1) The polynomials [tex]p_{1}(t) = 1 +t^{2}[/tex] and [tex]p_{2}(t) = 1-t^{2}[/tex] are linearly independient, 2) The polynomials [tex]p_{1}(t) = 2\cdot t +t^{2}[/tex] and [tex]p_{2}(t) = 1+t[/tex] are linearly independent, 3) The polynomials [tex]p_{1}(t) = 2\cdot t - 4\cdot t^{2}[/tex] and [tex]p_{2}(t) = 6\cdot t^{2}-3\cdot t[/tex] are linearly dependent.
Step-by-step explanation:
A set is linearly independent if and only if the sum of elements satisfy the following conditions:
[tex]\Sigma_{i=0}^{n} \alpha_{i} \cdot u_{i} = 0[/tex]
[tex]\alpha_{0} = \alpha_{1} =...=\alpha_{i} = 0[/tex]
1) The set of elements form the following sum:
[tex]\alpha_{1}\cdot p_{1}(t)+\alpha_{2}\cdot p_{2}(t) = 0[/tex]
[tex]\alpha_{1}\cdot (1+t^{2})+\alpha_{2}\cdot (1-t^{2}) = 0[/tex]
[tex](\alpha_{1}+\alpha_{2})\cdot (1) +(\alpha_{1}-\alpha_{2})\cdot t^{2} = 0[/tex]
From definition this system of equations must be satisfied:
[tex]\alpha_{1} + \alpha_{2} = 0[/tex] Eq. 1
[tex]\alpha_{1}-\alpha_{2} = 0[/tex] Eq. 2
From Eq. 2:
[tex]\alpha_{1} = \alpha_{2}[/tex]
In Eq. 1:
[tex]2\cdot \alpha_{1} =0[/tex]
[tex]\alpha_{1} = 0[/tex]
[tex]\alpha_{2} = 0[/tex]
The polynomials [tex]p_{1}(t) = 1 +t^{2}[/tex] and [tex]p_{2}(t) = 1-t^{2}[/tex] are linearly independient.
2) The set of elements form the following sum:
[tex]\alpha_{1}\cdot p_{1}(t)+\alpha_{2}\cdot p_{2}(t) = 0[/tex]
[tex]\alpha_{1}\cdot (2\cdot t+t^{2})+\alpha_{2}\cdot (1+t) = 0[/tex]
[tex]\alpha_{2}\cdot (1) +(2\cdot \alpha_{1}+\alpha_{2})\cdot t +\alpha_1 \cdot t^{2} = 0[/tex]
From definition this system of equations must be satisfied:
[tex]\alpha_{2} = 0[/tex]
[tex]2\cdot \alpha_{1}+\alpha_{2} = 0[/tex]
[tex]\alpha_{1} = 0[/tex]
The polynomials [tex]p_{1}(t) = 2\cdot t +t^{2}[/tex] and [tex]p_{2}(t) = 1+t[/tex] are linearly independent.
3) The set of elements form the following sum:
[tex]\alpha_{1}\cdot p_{1}(t)+\alpha_{2}\cdot p_{2}(t) = 0[/tex]
[tex]\alpha_{1}\cdot (2\cdot t-4\cdot t^{2})+\alpha_{2}\cdot (6\cdot t^{2}-3\cdot t) = 0[/tex]
[tex](2\cdot \alpha_{1}-3\cdot \alpha_{2})\cdot t + (-4\cdot \alpha_{1}+6\cdot \alpha_{2})\cdot t^{2} = 0[/tex]
From definition this system of equations must be satisfied:
[tex]2\cdot \alpha_{1}-3\cdot \alpha_{2} = 0[/tex] (Eq. 1)
[tex]-4\cdot \alpha_{1}+6\cdot \alpha_{2} =0[/tex] (Eq. 2)
It is easy to find that each coefficient is multiple of the other one, that is:
[tex]\alpha_{1} =\frac{3}{2}\cdot \alpha_{2}[/tex] (From Eq. 1)
[tex]\alpha_{1} = \frac{6}{4}\cdot \alpha_{2}[/tex] (From Eq. 2)
[tex]\alpha_{1} = \frac{3}{2}\cdot \alpha_{2}[/tex]
Which means that polynomials [tex]p_{1}(t) = 2\cdot t - 4\cdot t^{2}[/tex] and [tex]p_{2}(t) = 6\cdot t^{2}-3\cdot t[/tex] are linearly dependent.