Answer:
The solution of the Given matrix
( x₁ , x ₂ ) = ( - 5 , 4 )
Step-by-step explanation:
Step(i):-
Given equations are x₁+4 x₂ = 11 ...(i)
2 x₁ + 7 x₂= 18 ...(ii)
The matrix form
A X = B
[tex]\left[\begin{array}{ccc}1&4\\2&7\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}11\\8\\\end{array}\right][/tex]
Step(ii):-
[tex]\left[\begin{array}{ccc}1&4\\2&7\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}11\\8\\\end{array}\right][/tex]
The Augmented Matrix form is
[tex][AB] = \left[\begin{array}{ccc}1&4&11\\2&7&18\\\end{array}\right][/tex]
Apply Row operations, R₂ → R₂-2 R₁
[tex][AB] = \left[\begin{array}{ccc}1&4&11\\0&-1&-4\\\end{array}\right][/tex]
The matrix form
[tex]\left[\begin{array}{ccc}1&4\\0&-1\\\end{array}\right] \left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{ccc}11\\-4\\\end{array}\right][/tex]
The equations are
x₁ + 4 x₂ = 11 ...(a)
- x ₂ = - 4
x ₂ = 4
Substitute x ₂ = 4 in equation (a)
x₁ + 4 x₂ = 11
x₁ = 11 - 16
x₁ = -5
Final answer:-
The solution of the Given matrix
( x₁ , x ₂ ) = ( - 5 , 4 )