Answer:
The answer is "[tex]\bold{\frac{343 \ \pi}{24} \ \text{cubic units}}[/tex]"
Step-by-step explanation:
The volume of the mass whose cross-sectional area has been perpendicular is usually sliced by the method The cross-section, which is based to parallel to y-axis;
[tex]V = \int_{a}^{b} A (x)dx[/tex]
The semi-circular segment of the strong and seems to be perpendicular to foundation and
Y-axis parallel.
Its cross-section does have a diameter of: [tex](7-x)[/tex].
It also transverse radius is: [tex]\frac{1}{2}(7-x)[/tex].
The semi-circular segment area is,
[tex]Formula: \\\\ A(x)=\frac{1}{2} \times \pi \times r^2[/tex]
[tex]=\frac{1}{2} \times \pi \times (\frac{(7-x)}{2})^2\\\\=\frac{1}{2} \times \pi \times (\frac{(7-x)^2}{4})\\\\=\frac{1}{8}\pi(7-x)^2\\[/tex]
when
[tex]0 \leq \ x \ \leq 7[/tex]
Calculating the volume from the solid accordingly:
[tex]V= \int_{0}^{7}\frac{1}{8} \times\pi \times (7-x)^2 dx[/tex]
[tex]= \frac{1}{8} \pi \int_{0}^{7}(7-x)^2 dx \\\\= \frac{1}{8} \pi [\frac{(7-3)^3}{-3}]_{0}^{7}\\\\= \frac{\pi}{24} \times [7^3-0]\\\\= \frac{\pi}{24} \times 343\\\\= \frac{343 \pi}{24} \\[/tex]