In evaluating a double integral over a region D, a sum of iterated integrals was obtained as follows:

∬Df(x,y)dA=∫5_0∫(2/5)y_0 f(x,y)dxdy+∫7_5∫(7−y)_0 f(x,y)dxdy.

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.

∫b_a∫g2(x)_g1(x) f(x,y)dydx

a= b=

g1(x)= g2(x)=

Respuesta :

Answer

[tex]a=0[/tex], [tex]b=2[/tex]

[tex]g_1(x)=\frac{5x}{2}[/tex],  [tex]g_2(x)=7-x[/tex]

Step-by-step explanation:

Given that

[tex]\int \int Df(x,y)dA=\int_0 ^5\int _0 ^ {\frac {2y}{5}} f(x,y)dxdy+\int_5^7\int_0^{7-y} f(x,y)dxdy\; \cdots (i)[/tex]

For the term  [tex]\int_0 ^5\int _0 ^ {\frac {2y}{5}} f(x,y)dxdy[/tex].

Limits for [tex]x[/tex] is from [tex]x=0[/tex] to [tex]x=\frac {2y}{5}[/tex] and for [tex]y[/tex] is from [tex]y=0[/tex] to [tex]y=5[/tex]  and the region [tex]D[/tex], for this double integration is the shaded region as shown in graph 1.

Now, reverse the order of integration, first integrate with respect to [tex]y[/tex] then with respect to [tex]x[/tex] . So, the limits of [tex]y[/tex] become from [tex]y=\frac{5x}{2}[/tex] to [tex]y=5[/tex] and limits of [tex]x[/tex] become from [tex]x=0[/tex] to [tex]x=2[/tex] as shown in graph 2.

So, on reversing the order of integration, this double integration can be written as

[tex]\int_0 ^5\int _0 ^ {\frac {2y}{5}} f(x,y)dxdy=\int_0 ^2\int _ {\frac {5x}{2}}^5 f(x,y)dydx\; \cdots (ii)[/tex]

Similarly, for the other term  [tex]\int_5 ^7\int _0 ^ {7-y} f(x,y)dxdy[/tex].

Limits for [tex]x[/tex] is from [tex]x=0[/tex] to [tex]x=7-y[/tex] and limits for [tex]y[/tex] is from [tex]y=5[/tex] to [tex]y=7[/tex]  and the region [tex]D[/tex], for this double integration is the shaded region as shown in graph 3.

Now, reverse the order of integration, first integrate with respect to [tex]y[/tex] then with respect to [tex]x[/tex] . So, the limits of [tex]y[/tex] become from [tex]y=5[/tex] to [tex]y=7-x[/tex] and limits of [tex]x[/tex] become from [tex]x=0[/tex] to [tex]x=2[/tex] as shown in graph 4.

So, on reversing the order of integration, this double integration can be written as

[tex]\int_5 ^7\int _0 ^ {7-y} f(x,y)dxdy=\int_0 ^2\int _5 ^ {7-x} f(x,y)dydx\;\cdots (iii)[/tex]

Hence, from equations [tex](i)[/tex], [tex](ii)[/tex] and [tex](iii)[/tex] , on reversing the order of integration, the required expression is

[tex]\int \int Df(x,y)dA=\int_0 ^2\int _ {\frac {5x}{2}}^5 f(x,y)dydx+\int_0 ^2\int _5 ^ {7-x} f(x,y)dydx[/tex]

[tex]\Rightarrow \int \int Df(x,y)dA=\int_0 ^2\left(\int _ {\frac {5x}{2}}^5 f(x,y)+\int _5 ^ {7-x} f(x,y)\right)dydx[/tex]

[tex]\Rightarrow \int \int Df(x,y)dA=\int_0 ^2\int _ {\frac {5x}{2}}^{7-x} f(x,y)dydx\; \cdots (iv)[/tex]

Now, compare the RHS of the equation [tex](iv)[/tex] with

[tex]\int_a^b\int_{g_1(x)}^{g_2(x)} f(x,y)dydx[/tex]

We have,

[tex]a=0, b=2, g_1(x)=\frac{5x}{2}[/tex] and [tex]g_2(x)=7-x[/tex].

Ver imagen Ritz01
Ver imagen Ritz01
Ver imagen Ritz01
Ver imagen Ritz01

The required values are,

[tex]a=0\\b=2\\g_1(x)=\frac{5x}{2} \\g_2(x)=7-x[/tex]

Double Integral:

Double integral is mainly used to find the surface area of a 2d figure, and it is denoted using ‘ ∫∫’. We can easily find the area of a rectangular region by double integration.

Given function is,

[tex]\int \int_Df(x,y)dA=\int_{0}^{5}\int_{0}^{2y}f(x,y)dxdy+\int_{5}^{7}\int_{0}^{7-y}f(x,y)dxdy[/tex]

We can write the double integral as a single term by reversing the order as,

[tex]\int_{a}^{b}\int_{g_1(x)}^{g_2(x)}f(x,y)dydx=\int_{0}^{2}\int_{\frac{5x}{2}}^{7-x}f(x,y)dydx)[/tex]

The region D is attached below.

Hence, we get the values,

[tex]a=0\\b=2\\g_1(x)=\frac{5x}{2} \\g_2(x)=7-x[/tex]

Learn more about the topic Double Integral:

https://brainly.com/question/18568839

Ver imagen Omm2
RELAXING NOICE
Relax