Respuesta :
Answer
[tex]a=0[/tex], [tex]b=2[/tex]
[tex]g_1(x)=\frac{5x}{2}[/tex], [tex]g_2(x)=7-x[/tex]
Step-by-step explanation:
Given that
[tex]\int \int Df(x,y)dA=\int_0 ^5\int _0 ^ {\frac {2y}{5}} f(x,y)dxdy+\int_5^7\int_0^{7-y} f(x,y)dxdy\; \cdots (i)[/tex]
For the term [tex]\int_0 ^5\int _0 ^ {\frac {2y}{5}} f(x,y)dxdy[/tex].
Limits for [tex]x[/tex] is from [tex]x=0[/tex] to [tex]x=\frac {2y}{5}[/tex] and for [tex]y[/tex] is from [tex]y=0[/tex] to [tex]y=5[/tex] and the region [tex]D[/tex], for this double integration is the shaded region as shown in graph 1.
Now, reverse the order of integration, first integrate with respect to [tex]y[/tex] then with respect to [tex]x[/tex] . So, the limits of [tex]y[/tex] become from [tex]y=\frac{5x}{2}[/tex] to [tex]y=5[/tex] and limits of [tex]x[/tex] become from [tex]x=0[/tex] to [tex]x=2[/tex] as shown in graph 2.
So, on reversing the order of integration, this double integration can be written as
[tex]\int_0 ^5\int _0 ^ {\frac {2y}{5}} f(x,y)dxdy=\int_0 ^2\int _ {\frac {5x}{2}}^5 f(x,y)dydx\; \cdots (ii)[/tex]
Similarly, for the other term [tex]\int_5 ^7\int _0 ^ {7-y} f(x,y)dxdy[/tex].
Limits for [tex]x[/tex] is from [tex]x=0[/tex] to [tex]x=7-y[/tex] and limits for [tex]y[/tex] is from [tex]y=5[/tex] to [tex]y=7[/tex] and the region [tex]D[/tex], for this double integration is the shaded region as shown in graph 3.
Now, reverse the order of integration, first integrate with respect to [tex]y[/tex] then with respect to [tex]x[/tex] . So, the limits of [tex]y[/tex] become from [tex]y=5[/tex] to [tex]y=7-x[/tex] and limits of [tex]x[/tex] become from [tex]x=0[/tex] to [tex]x=2[/tex] as shown in graph 4.
So, on reversing the order of integration, this double integration can be written as
[tex]\int_5 ^7\int _0 ^ {7-y} f(x,y)dxdy=\int_0 ^2\int _5 ^ {7-x} f(x,y)dydx\;\cdots (iii)[/tex]
Hence, from equations [tex](i)[/tex], [tex](ii)[/tex] and [tex](iii)[/tex] , on reversing the order of integration, the required expression is
[tex]\int \int Df(x,y)dA=\int_0 ^2\int _ {\frac {5x}{2}}^5 f(x,y)dydx+\int_0 ^2\int _5 ^ {7-x} f(x,y)dydx[/tex]
[tex]\Rightarrow \int \int Df(x,y)dA=\int_0 ^2\left(\int _ {\frac {5x}{2}}^5 f(x,y)+\int _5 ^ {7-x} f(x,y)\right)dydx[/tex]
[tex]\Rightarrow \int \int Df(x,y)dA=\int_0 ^2\int _ {\frac {5x}{2}}^{7-x} f(x,y)dydx\; \cdots (iv)[/tex]
Now, compare the RHS of the equation [tex](iv)[/tex] with
[tex]\int_a^b\int_{g_1(x)}^{g_2(x)} f(x,y)dydx[/tex]
We have,
[tex]a=0, b=2, g_1(x)=\frac{5x}{2}[/tex] and [tex]g_2(x)=7-x[/tex].




The required values are,
[tex]a=0\\b=2\\g_1(x)=\frac{5x}{2} \\g_2(x)=7-x[/tex]
Double Integral:
Double integral is mainly used to find the surface area of a 2d figure, and it is denoted using ‘ ∫∫’. We can easily find the area of a rectangular region by double integration.
Given function is,
[tex]\int \int_Df(x,y)dA=\int_{0}^{5}\int_{0}^{2y}f(x,y)dxdy+\int_{5}^{7}\int_{0}^{7-y}f(x,y)dxdy[/tex]
We can write the double integral as a single term by reversing the order as,
[tex]\int_{a}^{b}\int_{g_1(x)}^{g_2(x)}f(x,y)dydx=\int_{0}^{2}\int_{\frac{5x}{2}}^{7-x}f(x,y)dydx)[/tex]
The region D is attached below.
Hence, we get the values,
[tex]a=0\\b=2\\g_1(x)=\frac{5x}{2} \\g_2(x)=7-x[/tex]
Learn more about the topic Double Integral:
https://brainly.com/question/18568839

