Answer:
[tex]y = \frac{7}{10} e^{3(t - 1)} + \frac{3}{10}e^{-7(t - 1)}[/tex]
Step-by-step explanation:
y′′ + 4y′ − 21y = 0
The auxiliary equation is given by
m² + 4m - 21 = 0
We solve this using the quadratic formula. So
[tex]m = \frac{-4 +/- \sqrt{4^{2} - 4 X 1 X (-21))} }{2 X 1}\\ = \frac{-4 +/- \sqrt{16 + 84} }{2}\\= \frac{-4 +/- \sqrt{100} }{2}\\= \frac{-4 +/- 10 }{2}\\= -2 +/- 5\\= -2 + 5 or -2 -5\\= 3 or -7[/tex]
So, the solution of the equation is
[tex]y = Ae^{m_{1} t} + Be^{m_{2} t}[/tex]
where m₁ = 3 and m₂ = -7.
So,
[tex]y = Ae^{3t} + Be^{-7t}[/tex]
Also,
[tex]y' = 3Ae^{3t} - 7e^{-7t}[/tex]
Since y(1) = 1 and y'(1) = 0, we substitute them into the equations above. So,
[tex]y(1) = Ae^{3X1} + Be^{-7X1}\\1 = Ae^{3} + Be^{-7}\\Ae^{3} + Be^{-7} = 1 (1)[/tex]
[tex]y'(1) = 3Ae^{3X1} - 7Be^{-7X1}\\0 = 3Ae^{3} - 7Be^{-7}\\3Ae^{3} - 7Be^{-7} = 0 \\3Ae^{3} = 7Be^{-7}\\A = \frac{7}{3} Be^{-10}[/tex]
Substituting A into (1) above, we have
[tex]\frac{7}{3}B e^{-10}e^{3} + Be^{-7} = 1 \\\frac{7}{3}B e^{-7} + Be^{-7} = 1\\\frac{10}{3}B e^{-7} = 1\\B = \frac{3}{10} e^{7}[/tex]
Substituting B into A, we have
[tex]A = \frac{7}{3} \frac{3}{10} e^{7}e^{-10}\\A = \frac{7}{10} e^{-3}[/tex]
Substituting A and B into y, we have
[tex]y = Ae^{3t} + Be^{-7t}\\y = \frac{7}{10} e^{-3}e^{3t} + \frac{3}{10} e^{7}e^{-7t}\\y = \frac{7}{10} e^{3(t - 1)} + \frac{3}{10}e^{-7(t - 1)}[/tex]
So the solution to the differential equation is
[tex]y = \frac{7}{10} e^{3(t - 1)} + \frac{3}{10}e^{-7(t - 1)}[/tex]