Respuesta :

Answer:

B

Step-by-step explanation:

Given

[tex]\frac{1}{(t-2)^2}[/tex] = 6 + [tex]\frac{1}{(t-2)}[/tex] ( multiply through by (t - 2)²

1 = 6(t - 2)² + t - 2 ← distribute parenthesis and simplify

1 = 6(t² - 4t + 4) + t - 2

1 = 6t² - 24t + 24 + t - 2

1 = 6t² - 23t + 22 ( subtract 1 from both sides )

6t² - 23t + 21 = 0 ← in standard form

(2t - 3)(3t - 7) = 0 → in factored form

Equate each factor to zero and solve for t

2t - 3 = 0 ⇒ 2t = 3 ⇒ t = [tex]\frac{3}{2}[/tex] ← p

3t - 7 = 0 ⇒ 3t = 7 ⇒ t = [tex]\frac{7}{3}[/tex]  ← q

Thus

p × q = [tex]\frac{3}{2}[/tex] × [tex]\frac{7}{3}[/tex] = [tex]\frac{21}{6}[/tex] = [tex]\frac{7}{2}[/tex] → B

RELAXING NOICE
Relax