Respuesta :

Answer:

y = - [tex]\frac{63}{4}[/tex] or - 15.75

Step-by-step explanation:

Order of operations.

y + [tex]\frac{9}{2}[/tex] = y - [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex] Subtract y from each side.

y - y + [tex]\frac{9}{2}[/tex] = y - y - [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex]

[tex]\frac{9}{2}[/tex] =  - [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex]   Add [tex]\frac{3}{4}[/tex] to each side

[tex]\frac{9}{2}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{3}{4}[/tex] + [tex]\frac{3}{4}[/tex] - [tex]\frac{y}{3}[/tex]

[tex]\frac{9}{2}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{y}{3}[/tex]    Find the common denominator for [tex]\frac{9}{2}[/tex] and [tex]\frac{3}{4}[/tex], which is 4

[tex]\frac{9}{2}[/tex] * [tex]\frac{2}{2}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{y}{3}[/tex]

[tex]\frac{18}{4}[/tex] + [tex]\frac{3}{4}[/tex] = - [tex]\frac{y}{3}[/tex]

[tex]\frac{21}{4}[/tex] = - [tex]\frac{y}{3}[/tex]   Multiply each side by 3

[tex]\frac{21}{4}[/tex]  * 3 = - [tex]\frac{y}{3}[/tex] * 3

[tex]\frac{63}{4}[/tex] = - y      Divide each side by -1

y = - [tex]\frac{63}{4}[/tex] = - 15 [tex]\frac{3}{4}[/tex]

y = - 15.75

Step-by-step explanation:

There are 2 scenarios below. One without parenthesis and the second with. I believe the second one is your question.

  • y+9÷2=y-3÷4-(y/3)
  • y - y + y/3 = - 3/4 - 9/2               ⇒ combining like terms
  • y/3 = -3/4 - 18/4
  • y/3 = -21/4
  • y = -21/4*3
  • y = -63/4
  • y = - 15 3/4

===============

  • (y+9)÷2=(y-3)÷4-(y/3)
  • 12*(y+9)/2 = 12* (y-3)/4 - 12*y/3      ⇒ this is to get rid of fraction
  • 6(y+9) = 3(y-3) - 4y
  • 6y + 54 = 3y - 9 - 4y
  • 6y + 54 = - y - 9
  • 6y + y = - 9 - 54
  • 7y = - 63
  • 7y/7 = -63/7
  • y = -9
RELAXING NOICE
Relax