Answer:
[tex]g(x) = 2x^2 - 3x - 1[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 2x^2 + 3x - 1[/tex]
Required
Determine g(x), if f(x) is reflected across the y axis
When a function (x,y) is reflected across the y axis, the new function becomes (−x,y).
In other words,
[tex]g(x) = f(-x)[/tex]
Calculating f(-x)
[tex]f(-x) = 2(-x)^2 + 3(-x) - 1[/tex]
[tex]f(-x) = 2x^2 - 3x - 1[/tex]
Substitute g(x) for f(-x)
[tex]g(x) = 2x^2 - 3x - 1[/tex]
Hence;
[tex]g(x) = 2x^2 - 3x - 1[/tex]