Respuesta :
Answer:
[tex]\frac{kq^{2} }{2a^2}[/tex]
Explanation:
The magnitude on the charge at the bottom-left corner due to the charge on the top vertex of the triangle will act along the +ve x-axis and the +ve y-axis.
From Coulomb's law the magnitude of the forces on the charge at the bottom-left corner, due to the charge on the top vertex of the triangle are [tex]\frac{kq^{2} }{a^2}[/tex]cos 60, and
The magnitude on the charge due to the charge at the bottom-right corner will only act in the -ve x-axis, since they repel each other (like charges repel). The magnitude is [tex]\frac{kq^{2} }{a^2}[/tex]
The angle made by the upper charge to the charge we're considering is 60° with the horizontal.
The total force on the charge along the x-axis is
[tex]F_{x}[/tex] = [tex]\frac{kq^{2} }{a^2}[/tex]cos 60 -
[tex]F_{x}[/tex] = [tex]\frac{kq^{2} }{2a^2}[/tex] - [tex]\frac{kq^{2} }{a^2}[/tex]
==> -[tex]\frac{kq^{2} }{2a^2}[/tex]
For the y-axis, we have
[tex]F_{y}[/tex] = [tex]\frac{kq^{2} }{a}[/tex]sin 60
[tex]F_{y}[/tex] = [tex]\frac{\sqrt{3}* kq^{2} }{2a^2}[/tex]
The resultant force is
[tex]|F| = \sqrt{F_{x}^{2}+ F_{y}^2 }[/tex]
The common factors between the two x-axis force, and the y-axis force is
[tex]\frac{kq^{2} }{2a^2}[/tex], we put this outside the square root (squaring this and square rooting will give us the initial value)
[tex]|F|[/tex] = [tex]\frac{kq^{2} }{2a^2}[/tex][tex]\sqrt{(\frac{1}{2})^2 + (\frac{\sqrt{3} }{2})^2 }[/tex]
[tex]|F|[/tex] = [tex]\frac{kq^{2} }{2a^2}[/tex][tex]\sqrt{\frac{1}{4} +\frac{3}{4} }[/tex]
==> [tex]\frac{kq^{2} }{2a^2}[/tex][tex]\sqrt{1}[/tex]
the magnitude of the electric force on the charge at the bottom left-hand vertex of the triangle due to the other two charges is
[tex]|F|[/tex] = [tex]\frac{kq^{2} }{2a^2}[/tex]
