Respuesta :
Here is the correct format for the question.
[tex]x'_1 = 7x_1 +4x_2+ 12x_3 , \ \ x'_2 = x_1 + 2x_2 + x_3 , \ \ x'_3 = -3x_1 -2x_2 -5x_3[/tex] . Then find the solution that satisfies [tex]x \limits ^{\to} = \left[\begin{array}{c}0\\1\\-2\end{array}\right][/tex]
Answer:
[tex]\mathbf{c_1 = -3, c_2 = 2, c_3 = 2}[/tex]
Step-by-step explanation:
From the figures given above:
the matrix can be computed as,
[tex]\left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right] x \limits ^{\to} = \left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right] = x \limits ^{\to} = \left[\begin{array}{c}x_1'\\x_2'\\x_3'\end{array}\right][/tex]
The first thing we need to carry out is to determine the eigenvalues of A,
where:
[tex]A = \left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right][/tex]
[tex]|A-rI|=0[/tex]
[tex]\begin {vmatrix} 7-r&4&12\\1&2-r&1\\-3&-2&-5-r \end {vmatrix}=0[/tex]
the eigenvalues are r = 0, 1, 3
However, the eigenvector correlated to each eigenvalue can be calculated as follows.
suppose r = 0
(A - rI) x = 0
[tex]\left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right] \left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{c}0\\0\\0\end{array}\right][/tex]
now the eigenvector is [tex]\left[\begin{array}{c}-4\\1\\2\end{array}\right][/tex]
However, for eigenvalue = 1, we have : [tex]\left[\begin{array}{c}-4\\1\\2\end{array}\right][/tex]
for eigenvalue = 3, we have:[tex]\left[\begin{array}{c}-2\\-1\\1\end{array}\right][/tex]
The solution now can be computed as :
[tex]x(t)= c_1 \left[\begin{array}{c}-4\\1\\2\end{array}\right] + c_2e^t \left[\begin{array}{c}-4\\3\\1\end{array}\right]+ c_3e^{3t} \left[\begin{array}{c}-2\\-1\\1\end{array}\right][/tex]
Similarly, the fundamental matrix solution is:
[tex]\left[\begin{array}{ccc}-4&-4e^t&-2e^{3t}\\1&3e^t&-e^{3t}\\2&e^t&e^{3t}\end{array}\right][/tex]
[tex]-4c_1 -4c_2-2c_3 =0 \\ \\ c_1 + 3c_2 -c_3 = 1\\ \\ 2c_1+c_2 +c_3 = -2[/tex]
Solving the above equation, we get:
[tex]\mathbf{c_1 = -3, c_2 = 2, c_3 = 2}[/tex]