Find a fundamental matrix solution for the system x 0 1 7x1 + 4x2 + 12x3, x 0 2 x1 + 2x2 + x3, x 0 3 −3x1 − 2x2 − 5x3. Then find the solution that satisfies x®(0) h 0 1 −2 i .

Respuesta :

Here is the correct format for the question.

[tex]x'_1 = 7x_1 +4x_2+ 12x_3 , \ \ x'_2 = x_1 + 2x_2 + x_3 , \ \ x'_3 = -3x_1 -2x_2 -5x_3[/tex] . Then find the solution that satisfies  [tex]x \limits ^{\to} = \left[\begin{array}{c}0\\1\\-2\end{array}\right][/tex]

Answer:

[tex]\mathbf{c_1 = -3, c_2 = 2, c_3 = 2}[/tex]

Step-by-step explanation:

From the figures given above:

the matrix can be computed as,

[tex]\left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right] x \limits ^{\to} = \left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right] = x \limits ^{\to} = \left[\begin{array}{c}x_1'\\x_2'\\x_3'\end{array}\right][/tex]

The first thing we need to carry out is to determine the eigenvalues of A,

where:

[tex]A = \left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right][/tex]

[tex]|A-rI|=0[/tex]

[tex]\begin {vmatrix} 7-r&4&12\\1&2-r&1\\-3&-2&-5-r \end {vmatrix}=0[/tex]

the eigenvalues are r = 0, 1, 3

However, the eigenvector correlated to each eigenvalue can be calculated as follows.

suppose  r = 0

(A - rI) x = 0

[tex]\left[\begin{array}{ccc}7&4&12\\1&2&1\\-3&-2&-5\end{array}\right] \left[\begin{array}{c}x_1\\x_2\\x_3\end{array}\right] = \left[\begin{array}{c}0\\0\\0\end{array}\right][/tex]

now the eigenvector is [tex]\left[\begin{array}{c}-4\\1\\2\end{array}\right][/tex]

However, for eigenvalue = 1, we have :  [tex]\left[\begin{array}{c}-4\\1\\2\end{array}\right][/tex]

for eigenvalue = 3, we have:[tex]\left[\begin{array}{c}-2\\-1\\1\end{array}\right][/tex]

The solution now can be computed as :

[tex]x(t)= c_1 \left[\begin{array}{c}-4\\1\\2\end{array}\right] + c_2e^t \left[\begin{array}{c}-4\\3\\1\end{array}\right]+ c_3e^{3t} \left[\begin{array}{c}-2\\-1\\1\end{array}\right][/tex]

Similarly, the fundamental matrix solution is:

[tex]\left[\begin{array}{ccc}-4&-4e^t&-2e^{3t}\\1&3e^t&-e^{3t}\\2&e^t&e^{3t}\end{array}\right][/tex]

[tex]-4c_1 -4c_2-2c_3 =0 \\ \\ c_1 + 3c_2 -c_3 = 1\\ \\ 2c_1+c_2 +c_3 = -2[/tex]

Solving the above equation, we get:

[tex]\mathbf{c_1 = -3, c_2 = 2, c_3 = 2}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico