Answer:
1.
Explanation:
Hello,
In this case, for the given reaction we first assign the oxidation state for each species:
[tex]Sn^0 + H^+N^{5+}O^{-2}_3 \rightarrow Sn^{4+}O_2 + N^{4+}O^{2-}_2 + H^+_2O^-[/tex]
Whereas the half reactions are:
[tex]Sn^0+2H_2O \rightarrow Sn^{4+}O_2 +4H^++4e^-\\\\H^++H^+N^{5+}O^{-2}_3 +1e^-\rightarrow N^{4+}O^{2-}_2+H_2O[/tex]
Next, we exchange the transferred electrons:
[tex]1\times(Sn^0+2H_2O \rightarrow Sn^{4+}O_2 +4H^++4e^-)\\\\4\times (H^++H^+N^{5+}O^{-2}_3 +1e^-\rightarrow N^{4+}O^{2-}_2+H_2O)\\\\\\Sn^0+2H_2O \rightarrow Sn^{4+}O_2 +4H^++4e^-\\\\4H^++4H^+N^{5+}O^{-2}_3 +4e^-\rightarrow 4N^{4+}O^{2-}_2+4H_2O[/tex]
Afterwards, we add them to obtain:
[tex]Sn^0+2H_2O+4H^++4H^+N^{5+}O^{-2}_3 \rightarrow Sn^{4+}O_2 +4H^++4N^{4+}O^{2-}_2+4H_2O[/tex]
By adding and subtracting common terms we obtain:
[tex]Sn^0+4H^+N^{5+}O^{-2}_3 \rightarrow Sn^{4+}O_2 +4N^{4+}O^{2-}_2+2H_2O[/tex]
Finally, by removing the oxidation states we have:
[tex]Sn + 4HNO_3 \rightarrow SnO_2 + 4NO_2 + 2H_2O[/tex]
Therefore, the smallest whole-number coefficient for Sn is 1.
Regards.