Answer:
[tex]\mathbf{U = \dfrac{3 k_c Q^2_{total}}{5R}}[/tex]
Explanation:
From the information given;
The surface area of a sphere = [tex]4 \pi r ^2[/tex]
If the sphere is from the collection of spherical shells of infinitesimal thickness = dr
Then,
the volume of the thickness and the sphere is;
V = [tex]4 \pi r ^2 \ dr[/tex]
Using Gauss Law
[tex]V(r) = \dfrac{k_cq(r)}{r}[/tex]
here,
q(r) =charge built up contained in radius r
since we are talking about collections of spherical shells, to work required for the next spherical shell r +dr is
[tex]-dW= dU = V(r) dq = \dfrac{k_c \ q(r)}{r} \ dq[/tex]
where;
[tex]q (r) = \dfrac{4}{3} \pi r^3 \rho[/tex]
dq which is the charge contained in the next shell of charge
here dq = volume of the shell multiply by the density
[tex]dq = 4 \pi r^2 \ dr \ \rho[/tex]
equating it all together
[tex]dU = \dfrac{k_c \frac{4}{3} \pi r^3 \rho}{r} 4 \pi r^2 \ dr \ \rho = \dfrac{16 \pi^2 \ k_c \ \rho^2}{3} \ r^4 \ dr[/tex]
Integration the work required from the initial radius r to the final radius R, we get;
[tex]U = \int^R_0 \ dU[/tex]
[tex]U = \int^R_0 \dfrac{16 \pi^2 \ k_c \rho^2}{3} r^4 \ dr[/tex]
[tex]U = \int^R_0 \dfrac{16 \pi^2 \ k_c \rho^2}{3} [\dfrac{r^5}{5}]^R_0[/tex]
[tex]U = \dfrac{16 \pi^2 k_c \rho^2}{15} \ R^5[/tex]
Recall that:
the total charge on a sphere, i.e [tex]Q_{total} = \dfrac{4}{3} \pi R^3 \rho[/tex]
Then :
[tex]\mathbf{U = \dfrac{3 k_c Q^2_{total}}{5R}}[/tex]