∠A and \angle B∠B are complementary angles. If m\angle A=(2x+10)^{\circ}∠A=(2x+10) ∘ and m\angle B=(3x+15)^{\circ}∠B=(3x+15) ∘ , then find the measure of \angle B∠B.

Respuesta :

Answer:

[tex]54^\circ[/tex]

Step-by-step explanation:

Given :

[tex]m\angle A=(2x+10)^{\circ}[/tex]

[tex]m\angle B=(3x+15)^{\circ}[/tex]

And angles [tex]\angle A[/tex] and [tex]\angle B[/tex] are complementary angles.

To find:

The measure of [tex]\angle B[/tex].

Solution:

First of all, let us learn about complementary angles.

Complementary angles are the angles whose sum is equal to [tex]90^\circ[/tex].

And we are given that angles [tex]\angle A[/tex] and [tex]\angle B[/tex] are complementary angles.

Therefore [tex]\angle A[/tex] + [tex]\angle B[/tex] = [tex]90^\circ[/tex]

[tex]\Rightarrow 2x+10+3x+15=90\\\Rightarrow 5x+25=90\\\Rightarrow 5x=65\\\Rightarrow x =13[/tex]

Putting the value in [tex]\angle B[/tex].

[tex]m\angle B=(3\times 13+15)^{\circ} = 54^\circ[/tex]

Therefore, the answer is [tex]\bold{\angle B = 54^\circ}[/tex]

RELAXING NOICE
Relax