Respuesta :
Answer:
[tex]\mathbf{S =6 \sqrt{1 + \dfrac{\pi^2}{9} }+ \dfrac{18}{\pi} In (\dfrac{\pi}{3}+ \sqrt{1+ \dfrac{\pi^2}{9}})}[/tex]
Step-by-step explanation:
Given that
curve [tex]y = \dfrac{\pi x}{3}, 0 \leq x \leq 3[/tex]
The objective is to find the area of the surface obtained by rotating the above curve about the x-axis.
Suppose f is positive and posses a continuous derivative,
the surface is gotten by the rotating the curve about the x-axis is:
[tex]S = \int ^b_a 2 \pi f (x) \sqrt {1 + (f' (x))^2 } \ dx[/tex]
The derivative of the function [tex]y' = \dfrac{\pi}{3} cos \dfrac{\pi x}{3}[/tex]
As such, the surface area is:
[tex]S = \int ^3_0 2 \pi sin \dfrac{\pi x}{3} \sqrt {1 +(\dfrac{\pi}{3}cos \dfrac{\pi x}{3})^2 } \ dx[/tex]
Suppose ;
[tex]u = \dfrac{\pi}{3}cos \dfrac{\pi x}{3}[/tex]
[tex]du = -( \dfrac{\pi}{3})^2 sin \dfrac{\pi x}{3} \ dx[/tex]
If x = 0 , then [tex]u = \dfrac{\pi}{3}cos \dfrac{\pi (0)}{3} = \dfrac{\pi}{3}[/tex]
If x = 3 , then [tex]u = \dfrac{\pi}{3}cos \dfrac{\pi (3)}{3}[/tex]
[tex]u = \dfrac{\pi}{3}(-1)[/tex]
[tex]u = -\dfrac{\pi}{3}[/tex]
The equation for S can now be rewritten as:
[tex]S = \int^3_0 2 \pi sin \dfrac{\pi x}{3} \sqrt{1+(\dfrac{\pi}{3} cos \dfrac{\pi x}{3})^2 }\ dx[/tex]
[tex]S = 2 \pi \int ^{-\frac{\pi}{3} }_{\frac{\pi}{3}}(-\dfrac{9 \ du }{\pi^2} ) \sqrt{1+u^2}[/tex]
[tex]S = 18 \pi * \dfrac{1}{\pi ^2 } \int ^{-\frac{\pi}{3}}_{\frac{\pi}{3}} \sqrt{1+u^2} \ du[/tex]
[tex]S = \dfrac{18} {\pi} \int ^{-\frac{\pi}{3}}_{\frac{\pi}{3}} \sqrt{1+u^2} \ du[/tex]
[tex]S = \dfrac{18} {\pi} (2 \int ^{-\frac{\pi}{3}}_{0} \sqrt{1+u^2} \ du)[/tex]
since [tex](\int ^a_{-a} fdx = 2\int^a_0 fdx , f= \sqrt{1+u^2} \ is \ even )[/tex]
Applying the formula:
[tex]\int {\sqrt{1+x^2}} \ d x= \dfrac{x}{2} \sqrt{1+x^2}+ \dfrac{1}{2} In ( x + \sqrt{1+x^2})[/tex]
[tex]S = \dfrac{36}{x}[ \dfrac{u}{2} \sqrt{1+u^2}+ \dfrac{1}{2} \ In (u+ \sqrt{1+u^2}) ] ^{\frac{\pi}{3}}_{0}[/tex]
[tex]S = \dfrac{36}{x}[ \dfrac{\dfrac{\pi}{3}}{2} \sqrt{1+\dfrac{\pi^2}{9}}+ \dfrac{1}{2} \ In (\dfrac{\pi}{3}+ \sqrt{1+\dfrac{\pi^2}{9}})-0 ][/tex]
[tex]S =6 \sqrt{1 + \dfrac{\pi^2}{9} }+ \dfrac{18}{\pi} In (\dfrac{\pi}{3}+ \sqrt{1+ \dfrac{\pi^2}{9}})[/tex]
Therefore, the exact area of the surface is [tex]\mathbf{S =6 \sqrt{1 + \dfrac{\pi^2}{9} }+ \dfrac{18}{\pi} In (\dfrac{\pi}{3}+ \sqrt{1+ \dfrac{\pi^2}{9}})}[/tex]
The area of the surface is,[tex]S = 6\sqrt{1+\dfrac{\pi ^2}{3}} + \dfrac{18}{3}\ ln (\dfrac{\pi }{3}+\sqrt{1+\dfrac{\pi ^2} {9}})[/tex].
Given that,
The exact area of the surface obtained by rotating the curve about the x-axis. y = sin πx\3 , 0 ≤ x ≤ 3.
We have to determine,
Area of the surface obtained by rotating the curve.
According to the question,
Suppose f is positive and posses a continuous derivative,
The surface is gotten by the rotating the curve about the x-axis is:
Area of the surface is given by,
[tex]S = \int\limits^b_a {2\pi f(x) .\sqrt{1+ (f'(x))} } \, dx[/tex]
The given curve is x-axis,
[tex]y = \dfrac{sin\pi x}{3}[/tex]
The derivative of the function is,
[tex]\dfrac{dy}{dx} =\dfrac{\pi }{3} \dfrac{ cos\pi x}{3}[/tex]
The surface area is,
[tex]S = \int\limits^b_a {2\pi f(x) .\sqrt{1+(\dfrac{\pi }{3} \dfrac{ cos\pi x}{3})^2} }}} \, dx[/tex]
Substitute the value of f(x),
[tex]S = \int\limits^3_0{2\pi\dfrac{sin\pi x}{3} .\sqrt{1+(\dfrac{\pi }{3} \dfrac{ cos\pi x}{3})^2} }}} \, dx[/tex]
Suppose;
[tex]u = \dfrac{\pi }{3}cos\dfrac{\pi x}{3}dx\\\\\du =( \dfrac{-\pi }{3})^2 sin\dfrac{\pi x}{3}dx\\\\if \ x = 0, \ then \ u = \dfrac{\pi }{3}cos\dfrac{\pi (0)}{3} = \dfrac{\pi }{3}\\\\if \ x = 3, \ then \ u = \dfrac{\pi }{3}cos\dfrac{\pi (3)}{3} = \dfrac{\pi }{3}(-1)= \dfrac{-\pi }{3}[/tex]
Then,
[tex]S = \int\limits^3_0{2\pi\dfrac{sin\pi x}{3} .\sqrt{1+(\dfrac{\pi }{3} \dfrac{ cos\pi x}{3})^2} }}} \, dx\\\\S = 2\pi \int\limits^{\frac{-\pi}{3}}_ \frac{\pi }{3} (\dfrac{-9du}{\pi ^2})\sqrt{1+u^2} \ du\\\\S = 18\pi \times \dfrac{1}{\pi ^2}\int\limits^{\frac{-\pi}{3}}_ \frac{\pi }{3} \sqrt{1+u^2} \ du\\\\S = \dfrac{18}{\pi}\int\limits^{\frac{-\pi}{3}}_ {0} 2\sqrt{1+u^2} \ du\\\\\\[/tex]
Since,
[tex](\int\limits^a_{-a}{f} \, dx = 2\int\limits^a_0 {f} \, dx , \ f = \sqrt{1+u^2}\ is \ even)[/tex]
By applying the formula to solve the given integration,
[tex]\int {\sqrt{1+x^2} } \, dx = \dfrac{x}{2}\sqrt{1+x^2} + \dfrac{1}{2} \ ln(x+\sqrt{1+x^2})\\\\S = \dfrac{36}{2} [ \dfrac{u}{2} \sqrt{1+u^2} + \dfrac{1}{2} \ ln(u+\sqrt{1+u^2})}]^{\frac{\pi }{3}}_0\\\\[/tex]
[tex]S = \dfrac{36}{2} [ \dfrac{\dfrac{\pi }{3}}{2} \sqrt{1+\dfrac{\pi^2 }{9}} + \dfrac{1}{2} \ ln(\dfrac{\pi }{3}+\sqrt{1+\dfrac{\pi ^2} {9}}-0)]\\\\S = 6\sqrt{1+\dfrac{\pi ^2}{3}} + \dfrac{18}{3}\ ln (\dfrac{\pi }{3}+\sqrt{1+\dfrac{\pi ^2} {9}})[/tex]
Hence, The area of the surface is,[tex]S = 6\sqrt{1+\dfrac{\pi ^2}{3}} + \dfrac{18}{3}\ ln (\dfrac{\pi }{3}+\sqrt{1+\dfrac{\pi ^2} {9}})[/tex]
To know more about Integration click the link given below.
https://brainly.com/question/17256859