Step-by-step explanation:
[tex] \sec \alpha \sqrt{1 - \sin ^{2} \alpha } = 1[/tex]
Prove the LHS
Using trigonometric identities
That's
[tex] \cos ^{2} \alpha = 1 - \sin^{2} \alpha [/tex]
Rewrite the expression
We have
[tex] \sec \alpha \sqrt{ \cos^{2} \alpha } [/tex]
[tex] \sqrt{ { \cos }^{2} \alpha } = \cos \alpha[/tex]
So we have
[tex] \sec \alpha \times \cos \alpha [/tex]
Using trigonometric identities
[tex] \sec \alpha = \frac{1}{ \cos \alpha } [/tex]
Rewrite the expression
That's
[tex] \frac{1}{\cos \alpha } \times \cos \alpha [/tex]
Reduce the expression with cos a
We have the final answer as
1
As proven
Hope this helps you