Respuesta :

Step-by-step explanation:

[tex] \sec \alpha \sqrt{1 - \sin ^{2} \alpha } = 1[/tex]

Prove the LHS

Using trigonometric identities

That's

[tex] \cos ^{2} \alpha = 1 - \sin^{2} \alpha [/tex]

Rewrite the expression

We have

[tex] \sec \alpha \sqrt{ \cos^{2} \alpha } [/tex]

[tex] \sqrt{ { \cos }^{2} \alpha } = \cos \alpha[/tex]

So we have

[tex] \sec \alpha \times \cos \alpha [/tex]

Using trigonometric identities

[tex] \sec \alpha = \frac{1}{ \cos \alpha } [/tex]

Rewrite the expression

That's

[tex] \frac{1}{\cos \alpha } \times \cos \alpha [/tex]

Reduce the expression with cos a

We have the final answer as

1

As proven

Hope this helps you

ACCESS MORE
EDU ACCESS
Universidad de Mexico