Respuesta :
Answer:
1.25+√3 or 2.9821 to the nearest ten thousandth.
Step-by-step explanation:
sin 60 = √3/2, tan 45 = 1 and cos^2 60 = (1/2)^2 = 1/4
So we get 2 *√3/2 + 1 + 1/4
= √3 + 1.25
Answer:
[tex] \boxed{\sf 2sin \: 60 ^{ \circ} + tan \: 45^{ \circ} + {cos}^{2} \ 60^{\circ} = 2.98} [/tex]
Step-by-step explanation:
We know:
[tex] \sf sin \: 60 ^{ \circ} = \frac{ \sqrt{3} }{2} \\ \\ \sf tan \: 45 ^{ \circ} = 1 \\ \\ \sf cos \: 60 ^{ \circ} = \frac{1}{2} [/tex]
So,
[tex] \sf \implies 2sin \: 60 ^{ \circ} + tan \: 45^{ \circ} + {cos}^{2} \: 60^{ \circ} \\ \\ \sf \implies \cancel{2} \times \frac{ \sqrt{3} }{ \cancel{2}} + 1 + {( \frac{1}{2}) }^{2} \\ \\ \sf \implies \sqrt{3} + 1 + {( \frac{1}{2}) }^{2} \\ \\ \sf \implies \sqrt{3} + 1 + \frac{1}{4} \\ \\ \sf \implies \sqrt{3} + 1 + 0.25 \\ \\ \sf \implies 1.25 + \sqrt{3} \\ \\ \sf \implies 1.25 + 1.73 \\ \\ \sf \implies 2.98[/tex]