Respuesta :
Answer:
(1) The point estimate for the population mean is 4.925.
(2) Therefore, a 95% confidence interval for the population mean pH of rainwater is [4.715, 5.135] .
(3) Therefore, a 99% confidence interval for the population mean pH of rainwater is [4.629, 5.221] .
(4) As the level of confidence increases, the width of the interval increases.
Step-by-step explanation:
We are given that the following data represent the pH of rain for a random sample of 12 rain dates.
X = 5.20, 5.02, 4.87, 5.72, 4.57, 4.76, 4.99, 4.74, 4.56, 4.80, 5.19, 4.68.
(1) The point estimate for the population mean is given by;
Point estimate, [tex]\bar X[/tex] = [tex]\frac{\sum X}{n}[/tex]
= [tex]\frac{5.20+5.02+ 4.87+5.72+ 4.57+ 4.76+4.99+ 4.74+ 4.56+ 4.80+5.19+ 4.68}{12}[/tex]
= [tex]\frac{59.1}{12}[/tex] = 4.925
(2) Let [tex]\mu[/tex] = mean pH of rainwater
Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean = 4.925
s = sample standard deviation = 0.33
n = sample of rain dates = 12
[tex]\mu[/tex] = population mean pH of rainwater
Here for constructing a 95% confidence interval we have used a One-sample t-test statistics as we don't know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-2.201 < [tex]t_1_1[/tex] < 2.201) = 0.95 {As the critical value of t at 11 degrees of
freedom are -2.201 & 2.201 with P = 2.5%}
P(-2.201 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.201) = 0.95
P( [tex]-2.201 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.201 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-2.201 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.201 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.201 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.201 \times {\frac{s}{\sqrt{n} } }[/tex] ]
= [ [tex]4.925-2.201 \times {\frac{0.33}{\sqrt{12} } }[/tex] , [tex]4.925+2.201 \times {\frac{0.33}{\sqrt{12} } }[/tex] ]
= [4.715, 5.135]
Therefore, a 95% confidence interval for the population mean pH of rainwater is [4.715, 5.135] .
The interpretation of the above confidence interval is that we are 95% confident that the population mean pH of rainwater is between 4.715 & 5.135.
(3) Now, 99% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-3.106 < [tex]t_1_1[/tex] < 3.106) = 0.99 {As the critical value of t at 11 degrees of
freedom are -3.106 & 3.106 with P = 0.5%}
P(-3.106 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 3.106) = 0.99
P( [tex]-3.106 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]3.106 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.99
P( [tex]\bar X-3.106 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+3.106 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.99
99% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-3.106 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+3.106 \times {\frac{s}{\sqrt{n} } }[/tex] ]
= [ [tex]4.925-3.106 \times {\frac{0.33}{\sqrt{12} } }[/tex] , [tex]4.925+3.106 \times {\frac{0.33}{\sqrt{12} } }[/tex] ]
= [4.629, 5.221]
Therefore, a 99% confidence interval for the population mean pH of rainwater is [4.629, 5.221] .
The interpretation of the above confidence interval is that we are 99% confident that the population mean pH of rainwater is between 4.629 & 5.221.
(4) As the level of confidence increases, the width of the interval increases as we can see above that the 99% confidence interval is wider as compared to the 95% confidence interval.