Respuesta :
Answer:
a. [tex]X(T) = 120 (1.058)^T[/tex]
b. Population after 3 years is 142
c. 50 years
Step-by-step explanation:
Given
Type of growth: Exponential
Initial number of rats = 120
Number of rats (15months) = 280
Solving (a)
Since the growth type is exponential, we make use of the following exponential progression
[tex]X_T = X_0 (1 + R)^T[/tex]
Where Xo is the initial population;
Xo = 125
[tex]X_T[/tex] is the current population at T month
So;
[tex]X_T = 280[/tex]; when [tex]T = 15[/tex]
Substitute these values in the above formula
[tex]280 =120 * (1 + R)^{15}[/tex]
Divide both sides by 120
[tex]\frac{280}{120} =(1 + R)^{15}[/tex]
[tex]2.3333 =(1 + R)^{15}[/tex]
Take 15th root of both sides
[tex]\sqrt[15]{2.3333} =1 + R[/tex]
[tex]1.05811235561 = 1 + R[/tex]
Subtract 1 from both sides
[tex]R = 1.05811235561 - 1[/tex]
[tex]R = 0.05811235561[/tex]
[tex]R = 0.058[/tex] (Approximated)
Plug in values of R and Xo in [tex]X_T = X_0 (1 + R)^T[/tex]
[tex]X_T = 120 (1 + 0.058)^T[/tex]
[tex]X_T = 120 (1.058)^T[/tex]
Write as a function
[tex]X(T) = 120 (1.058)^T[/tex]
Hence, the function is [tex]X(T) = 120 (1.058)^T[/tex]
Solving (b):
Population after 3 years
In this case, T = 3
So:
[tex]X(T) = 120 (1.058)^T[/tex]
[tex]X(3) = 120 (1.058)^3[/tex]
[tex]X(3) = 120 * 1.18466445254[/tex]
[tex]X(3) = 142.159734305[/tex]
[tex]X(3) = 142[/tex] (Approximated)
Solving (c): When population will reach 2000
Here: X(T) = 2000
So:
So:
[tex]2000 = 120 (1.058)^T[/tex]
Divide both sides by 120
[tex]\frac{2000}{120} = 1.058^T[/tex]
[tex]16.667 = 1.058^T[/tex]
Take Log of both sides
[tex]Log(16.667) = Log(1.058^T)[/tex]
Apply law of logarithm
[tex]Log(16.667) = TLog(1.058)[/tex]
Divide both sides by Log(1.058)
[tex]T = \frac{Log(16.667)}{Log(1.058)}[/tex]
[tex]T = 49.9009236926[/tex]
Approximate
[tex]T = 50\ years[/tex]