Answer:
[tex]\mathbf{P_x =25 \ watts}[/tex]
[tex]\mathbf{x_{rmx} = 5 \ unit}[/tex]
Explanation:
Given that:
x(t) = 10 sin(10t) . sin (15t)
the objective is to find the power and the rms value of the following signal square.
Recall that:
sin (A + B) + sin(A - B) = 2 sin A.cos B
x(t) = 10 sin(15t) . cos (10t)
x(t) = 5(2 sin (15t). cos (10t))
x(t) = 5 × ( sin (15t + 10t) + sin (15t-10t)
x(t) = 5sin(25 t) + 5 sin (5t)
From the knowledge of sinusoidial signal Asin (ωt), Power can be expressed as:
[tex]P= \dfrac{A^2}{2}[/tex]
For the number of sinosoidial signals;
Power can be expressed as:
[tex]P = \dfrac{A_1^2}{2}+ \dfrac{A_2^2}{2}+ \dfrac{A_3^2}{2}+ ...[/tex]
As such,
For x(t), Power [tex]P_x = \dfrac{5^2}{2}+ \dfrac{5^2}{2}[/tex]
[tex]P_x = \dfrac{25}{2}+ \dfrac{25}{2}[/tex]
[tex]P_x = \dfrac{50}{2}[/tex]
[tex]\mathbf{P_x =25 \ watts}[/tex]
For the number of sinosoidial signals;
[tex]RMS = \sqrt{(\dfrac{A_1}{\sqrt{2}})^2+(\dfrac{A_2}{\sqrt{2}})^2+(\dfrac{A_3}{\sqrt{2}})^2+...[/tex]
For x(t), the RMS value is as follows:
[tex]x_{rmx} =\sqrt{(\dfrac{5}{\sqrt{2}} )^2 +(\dfrac{5}{\sqrt{2}} )^2 }[/tex]
[tex]x_{rmx }=\sqrt{(\dfrac{25}{2} ) +(\dfrac{25}{2} ) }[/tex]
[tex]x_{rmx }=\sqrt{(\dfrac{50}{2} )}[/tex]
[tex]x_{rmx} =\sqrt{25}[/tex]
[tex]\mathbf{x_{rmx} = 5 \ unit}[/tex]