Respuesta :
Answer:
The mean of the sampling distribution [tex]\mu_{\overline x}[/tex] is 86
The standard deviation of the sampling distribution [tex]\sigma_x[/tex] is 2
The mean of the sampling distribution [tex]\mu_{\overline x}[/tex] is 71
The standard deviation of the sampling distribution [tex]\sigma_x[/tex] is 1
B) The distribution is approximately normal.
[tex]\mathbf{P(\overline x >73) = 0.0228}[/tex]
Therefore, the probability that the sample mean is greater than 73 = 0.0228
[tex]\mathbf{P(\overline x \leq 69) = 0.0228}[/tex]
The probability that the sample mean is less than or equal to 69 is 0.0228
[tex]\mathbf{P( 69.8 \leq \overline x \leq 72.5) = 0.8181}[/tex]
Thus, the probability that the sample mean is between 69.8 and 72 is 0.8181.
Step-by-step explanation:
We are to determine the [tex]\mu_{\overline x}[/tex] and [tex]\sigma_x[/tex] from the given parameters of a population and sample size.
Given that :
population mean [tex]\mu[/tex] = 86
population standard deviation [tex]\sigma[/tex] = 16
sample size n = 64
From the central limit theorem's knowledge, we know that as the sample distribution approximates a normal distribution, the sample size gets larger. Thus, the mean of the sampling distribution [tex]\mu_{\overline x}[/tex] is equal to the population mean [tex]\mu[/tex]
∴
[tex]\mu_{\overline x}[/tex] = [tex]\mu[/tex] = 86
The standard deviation of the sampling distribution can be computed by using the formula:
[tex]\sigma_{\overline x } = \dfrac{\sigma }{\sqrt{n}}[/tex]
[tex]\sigma_{\overline x } = \dfrac{16 }{\sqrt{64}}[/tex]
[tex]\sigma_{\overline x }= \dfrac{16 }{8}[/tex]
[tex]\mathbf{\sigma_{\overline x } = 2}[/tex]
∴
The mean of the sampling distribution [tex]\mu_{\overline x}[/tex] is 86
The standard deviation of the sampling distribution [tex]\sigma_x[/tex] is 2
Suppose a simple random sample of size n = 36 is obtained from a population with mu = 71 and sigma = 6.
i.e
sample size n = 36
population mean [tex]\mu[/tex] = 71
standard deviation [tex]\sigma[/tex] = 6
From the central limit theorem's knowledge, we know that as the sample distribution approximates a normal distribution, the sample size gets larger. Thus, the mean of the sampling distribution [tex]\mu_{\overline x}[/tex] is equal to the population mean [tex]\mu[/tex]
∴
[tex]\mu_{\overline x}[/tex] = [tex]\mu[/tex] = 71
The standard deviation of this sampling distribution [tex]\sigma_{\overline x}[/tex] can be estimated as :
[tex]\sigma_{\overline x }= \dfrac{\sigma }{\sqrt{n}}[/tex]
[tex]\sigma_{\overline x }= \dfrac{6 }{\sqrt{36}}[/tex]
[tex]\sigma_{\overline x } = \dfrac{6 }{6}[/tex]
[tex]\mathbf{\sigma_{\overline x } = 1}[/tex]
∴
The mean of the sampling distribution [tex]\mu_{\overline x}[/tex] is 71
The standard deviation of the sampling distribution [tex]\sigma_x[/tex] is 1
A)
The correct option from the given question is:
B) The distribution is approximately normal.
B) What is P (xbar > 73)?
i.e
[tex]P(\overline x >73) = P \begin {pmatrix} \dfrac{\overline x - \mu }{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{73 -71 }{\dfrac{6}{\sqrt{36}}} \end {pmatrix}[/tex]
[tex]P(\overline x >73) = P \begin {pmatrix} Z > \dfrac{73 -71 }{\dfrac{6}{\sqrt{36}}} \end {pmatrix}[/tex]
[tex]P(\overline x >73) = P \begin {pmatrix} Z > \dfrac{2 }{\dfrac{6}{6}} \end {pmatrix}[/tex]
[tex]P(\overline x >73) = P \begin {pmatrix} Z > \dfrac{2 \times 6 }{6} \end {pmatrix}[/tex]
[tex]P(\overline x >73) = P \begin {pmatrix} Z > \dfrac{12 }{6} \end {pmatrix}[/tex]
[tex]P(\overline x >73) = P \begin {pmatrix} Z > 2 \end {pmatrix}[/tex]
[tex]P(\overline x >73) = 1- P \begin {pmatrix} Z < 2 \end {pmatrix}[/tex]
Using the Excel Function ( =NORMDIST(2) )
[tex]P(\overline x >73) = 1- 0.9772[/tex]
[tex]\mathbf{P(\overline x >73) = 0.0228}[/tex]
Therefore, the probability that the sample mean is greater than 73 = 0.0228
C) What is P (xbar ≤ 69)?
i.e
[tex]P(\overline x \leq 69) = P \begin {pmatrix} \dfrac{\overline x - \mu }{\dfrac{\sigma}{\sqrt{n}}} \leq \dfrac{69 -71 }{\dfrac{6}{\sqrt{36}}} \end {pmatrix}[/tex]
[tex]P(\overline x \leq 69) = P \begin {pmatrix}Z \leq \dfrac{-2 }{\dfrac{6}{6}} \end {pmatrix}[/tex]
[tex]P(\overline x \leq 69) = P \begin {pmatrix} Z \leq \dfrac{-2 \times 6 }{6} \end {pmatrix}[/tex]
[tex]P(\overline x \leq 69) = P \begin {pmatrix} Z \leq \dfrac{-12 }{6} \end {pmatrix}[/tex]
[tex]P(\overline x \leq 69) = P \begin {pmatrix} Z \leq -2 \end {pmatrix}[/tex]
Using the EXCEL FUNCTION ( = NORMSDIST (-2) )
[tex]\mathbf{P(\overline x \leq 69) = 0.0228}[/tex]
The probability that the sample mean is less than or equal to 69 is 0.0228
NOTE: This text editor can't contain more than 5000 characters so the last part of the question is attached in the image below.
