Respuesta :

Answer:

[tex]q(x)=2x-5,x\neq-2[/tex]

Step-by-step explanation:

So we have:

[tex]a(x)=2x^2-x-10\\b(x)=x+2[/tex]

And we want to find the quotient q(x). Thus:

[tex]q(x)=\frac{a(x)}{b(x)}[/tex]

Substitute:

[tex]q(x)=\frac{2x^2-x-10}{x+2}[/tex]

Factor the numerator:

[tex]2x^2-x-10\\=2x^2+4x-5x-10\\=2x(x+2)-5(x+2)\\=(2x-5)(x+2)[/tex]

Substitute:

[tex]q(x)=\frac{(2x-5)(x+2)}{x+2}[/tex]

The (x+2)s cancel out. Therefore:

[tex]q(x)=2x-5[/tex]

However, we must restrict x such that it cannot equal -2.

In the original equation, if it did, our answer would be undefined. Thus, our final answer is:

[tex]q(x)=2x-5,x\neq-2[/tex]

And we are done :)

Edit: Typo

RELAXING NOICE
Relax