Evaluate the final kinetic energy of the supply spacecraft for the actual tractor beam force, F(x)=αx3+βF(x)=αx3+β.
α=6.1×10^−9 N/m^3
β=−4.1×10^6 N

Respuesta :

Answer:

K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x

Explanation:

To find the variation of kinetic energy, let's use the work energy theorem

            W = ΔK

           ∫ F .dx = K -K₀

If the body starts from rest K₀ = 0

           ∫ F dx cos θ = K

Since the force and displacement are in the same direction, the angle is zero, so the cosine is 1

we substitute  and integrate

          α ∫ x³ dx + β ∫ dx = K

          α x⁴ / 4 + β x / 1 = K

we evaluate from the lower limit F = 0 to the upper limit F

         α (x⁴ / 4 -0) + β (x -0) = K

        K = αX⁴ / 4 + β x

        K = 1.525 10⁻⁹ x⁴ + 4.1 10⁶ x

in order to finish the calculation we must know the displacement

Answer:

1.1 x 10^10J

Explanation:

∫x2,x1F(x)dx = ∫7.5 x 10^4 m ,0 (αx3+β)dx.

(αx4/4+βx) 7.5 x 10^4 m, 0

((6.1×10−9N/m3)( 7.5×104m)^4)/4 - (4.1×106N)( 7.5×104m) -0)

= 4.825 x 10^10 - 30.75 x 10^10

= 25.925 x 10^10J

= 2.5925 x 10^11J

The kinetic energy KE2 is,

KE2 = KE1 + ∫x2,x1F(x)dx

       = 2.7×1011J - .5925 x 10^11J

        = 0.1065 x 10^11J

        = 1.1 x 10^10J

ACCESS MORE
EDU ACCESS