Answer:
a
[tex]l_o =52 \ m[/tex]
b
[tex]l = 37.13 \ LY[/tex]
Explanation:
From the question we are told that
The speed of the spaceship is [tex]v = 0.800c[/tex]
Here c is the speed of light with value [tex]c = 3.0*10^{8} \ m/s[/tex]
The length is [tex]l = 31.2 \ m[/tex]
The distance of the star for earth is [tex]d = 145 \ light \ years[/tex]
The speed is [tex]v_s = 2.90 *10^{8}[/tex]
Generally the from the length contraction equation we have that
[tex]l = l_o \sqrt{1 -[\frac{v}{c } ]}[/tex]
Now the when at rest the length is [tex]l_o[/tex]
So
[tex]l_o =\frac{l}{\sqrt{ 1 - \frac{v^2}{c^2 } } }[/tex]
[tex]l_o =\frac{ 31.2 }{ \sqrt{1 - \frac{(0.800c ) ^2}{c^2} } }[/tex]
[tex]l_o=52 \ m[/tex]
Considering b
Applying above equation
[tex]l =l_o \sqrt{1 - [\frac{v}{c } ]}[/tex]
Here [tex]l_o =145 \ LY(light \ years )[/tex]
So
[tex]l=145 * \sqrt{1 - \frac{v_s^2}{c^2 } }[/tex]
[tex]l =145 * \sqrt{ 1 - \frac{2.9 *10^{8}}{3.0*10^{8}} }[/tex]
[tex]l = 37.13 \ LY[/tex]