contestada

A) A spaceship passes you at a speed of 0.800c. You measure its length to be 31.2 m .How long would it be when at rest?
B) You travel to a star 145 light-years from Earth at a speed of 2.90

Respuesta :

Answer:

a

     [tex]l_o  =52 \  m[/tex]

b

      [tex]l = 37.13 \ LY[/tex]

Explanation:

From the question we are told that

    The  speed of the spaceship is  [tex]v  =  0.800c[/tex]

    Here  c is the speed of light with value  [tex]c =  3.0*10^{8} \ m/s[/tex]

    The  length is  [tex]l = 31.2 \  m[/tex]

     The  distance of the star for earth is [tex]d = 145 \  light \  years[/tex]

     The  speed is [tex]v_s = 2.90 *10^{8}[/tex]

     

Generally the from the length contraction equation we have that

       [tex]l  =  l_o  \sqrt{1 -[\frac{v}{c } ]}[/tex]

Now the when at rest the length is  [tex]l_o[/tex]

So  

      [tex]l_o =\frac{l}{\sqrt{ 1 - \frac{v^2}{c^2 } } }[/tex]

      [tex]l_o =\frac{ 31.2 }{ \sqrt{1 - \frac{(0.800c ) ^2}{c^2} } }[/tex]

      [tex]l_o=52 \  m[/tex]

Considering b  

  Applying above equation

            [tex]l  =l_o \sqrt{1 -  [\frac{v}{c } ]}[/tex]

Here [tex]l_o  =145 \  LY(light \ years )[/tex]

So

           [tex]l=145 *  \sqrt{1 -  \frac{v_s^2}{c^2 } }[/tex]

            [tex]l =145 *  \sqrt{ 1 - \frac{2.9 *10^{8}}{3.0*10^{8}} }[/tex]

            [tex]l = 37.13 \ LY[/tex]

ACCESS MORE
EDU ACCESS