Respuesta :
Answer:
The area of the surface is 2.72 units
Step-by-step explanation:
The area of a curve y = (x) a ≤x ≤ b rotated about the y axis is given by:
[tex]s=\int\limits^a_b {2\pi x\sqrt{1+(\frac{dy}{dx} )^2} } \, dx[/tex]
y = 4 - x²
dy / dx = -2x
(dy/dx)² = (-2x)² = 4x²
Hence:
[tex]s=\int\limits^a_b {2\pi x\sqrt{1+(\frac{dy}{dx} )^2} } \, dx\\\\s=\int\limits^0_3 {2\pi x\sqrt{1+4x^2} } \, dx\\\\Let\ u = 1+4x^2\ \\\frac{du}{dx}=8x\\\frac{du}{8x}=dx\\\\Substituting\ value\ of\ u \ and\ dx:\\ \\s=\int\limits^0_3 {2\pi x\sqrt{u} } \, \frac{du}{8x} \\\\s=\frac{\pi }{4} \int\limits^0_3 {\sqrt{u} } \, du\\\\s=\frac{\pi }{4}|\frac{2}{3}u^{3/2}|_0^3\\\\s=\frac{\pi }{4}*\frac{2}{3}(5.196)\\\\s=2.72\ units[/tex]
The area of the surface is 2.72 units
The area of the resulting surface is [tex]37.3437\pi[/tex].
Curve:
A curve is an object that is similar to a line, but that does not have to be a straight line. A curve may be regarded as a trace left by a moving point.
Given:
[tex]y=4-x^{2}[/tex] , [tex]0 \leq x\leq 3[/tex]
Surface area[tex]=2\pi \int_{a}^{b}x\sqrt{1+\left ( \frac{dx}{dy} \right )^{2}dy}[/tex]
[tex]x=\sqrt{4-y} \ , \ \frac{dx}{dy}=-\frac{1}{2\sqrt{4-y}}[/tex]
when [tex]x=0 \ , \ y=4[/tex]
[tex]x=3 \ , \ y=-5[/tex]
Area of surface[tex]=2\pi \int_{-5}^{4}\sqrt{4-y}\sqrt{1+\frac{1}{4\left ( y-4 \right )}dy}[/tex]
[tex]=2\pi \int_{-5}^{4}\sqrt{4-y+\frac{4-y}{4\left ( y-4 \right )}dy} \\ =2\pi \int_{-5}^{4}\sqrt{4-y+\frac{1}{4}dy} \\ =\frac{2\pi }{2}\int_{-5}^{4}\sqrt{17-y} \ dy \\ =\pi \int_{-5}^{4}\sqrt{17-y} \ dy[/tex]
Solving with calculator:
[tex]\Rightarrow \pi\left [ \frac{1}{6}\left ( 37\sqrt{37}-1 \right ) \right ][/tex]
[tex]=37.3437\pi[/tex]
Learn more about the topic Curve: https://brainly.com/question/8771120