Answer:
Step-by-step explanation:
Given functions are,
f(x) = x³ + 4x²
g(x) = 5x² - 1
(a). (f + g)(x) = f(x) + g(x)
= x³ + 4x² + 5x² - 1
= x³ + 9x² - 1
Since the composite function is defined for all values of x, domain of the function will be (-∞, ∞)
(b). (f - g)(x) = x³ + 4x² - (5x² - 1)
= x³ - x² + 1
Domain of the function : (-∞, ∞)
(c). (f.g)(x) = f(x) × g(x)
= (x³ + 4x²)(5x² - 1)
= 5x⁵+ 20x⁴ - x³ - 4x²
Domain of the function will be (-∞, ∞).
(d). [tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]
= [tex]\frac{x^3+4x^2}{5x^2-1}[/tex]
Since this function is not defined at [5x² - 1 = 0] Or x = ±[tex]\frac{1}{\sqrt{5}}[/tex]
Therefore, Domain of the composite function will be,
(-∞, -[tex]\frac{1}{\sqrt{5}}[/tex]) ∪ [tex](-\frac{1}{\sqrt{5}},\frac{1}{\sqrt{5}})[/tex] ∪ ([tex]\frac{1}{\sqrt{5}}[/tex], ∞)