Respuesta :
Answer:
(c) Nitric acid [tex]\rm HNO_3\, (aq)[/tex] is the limiting reactant.
(d) Approximately [tex]6.6\; \rm g[/tex] of [tex]\rm CuO\, (s)[/tex] will be in excess.
(e) The percentage yield of [tex]\rm Cu(NO_3)_2[/tex] is approximately [tex]91\%[/tex]. (Rounded to two significant figures, as in other quantities in the question.)
Explanation:
Start with the balanced chemical equation:
[tex]\rm CuO\, (s) + 2\; HNO_3\, (aq) \to Cu(NO_3)_2\, (aq) + H_2O\, (l)[/tex].
Look up relevant relative atomic mass data on a modern periodic table:
- [tex]\rm Cu[/tex]: [tex]63.546[/tex].
- [tex]\rm O[/tex]: [tex]\rm 15.999[/tex].
- [tex]\rm H[/tex]: [tex]1.008[/tex].
- [tex]\rm N[/tex]: [tex]14.007[/tex].
Calculate the formula mass of the species:
- [tex]M(\mathrm{CuO}) = 63.546 + 15.999 = 79.545\; \rm g\cdot mol^{-1}[/tex].
- [tex]M(\mathrm{Cu(NO_3)_2}) = 63.546 + 2\times (14.007 + 3 \times 15.999) = 187.554\; \rm g\cdot mol^{-1}[/tex].
Limiting Reactant
There are two reactants in this reaction: [tex]\rm CuO[/tex] and [tex]\rm HNO_3\, (aq)[/tex]. Assume that [tex]\rm CuO\![/tex] is the limiting one. In other words, assume that all the [tex]\rm CuO\!\![/tex] is consumed before [tex]\rm HNO_3\, (aq)\![/tex] was.
Consider: how many moles of [tex]\rm HNO_3\, (aq)\!\![/tex] would be required to convert all that [tex]7.0\; \rm g[/tex] of [tex]\rm CuO\!\!\![/tex] to [tex]\rm Cu(NO_3)_2[/tex]?
Calculate the number of moles of [tex]\rm CuO[/tex] formula units in [tex]7.0\;\rm g[/tex] of
[tex]\displaystyle n({\rm CuO}) = \frac{m}{M} = \frac{7.0\; \rm g}{79.545\; \rm g \cdot mol^{-1}} \approx 0.088001\; \rm mol[/tex].
Note the ratio between the coefficients of [tex]\rm CuO\, (s)[/tex] and [tex]\rm HNO_3\, (aq)[/tex]:
[tex]\displaystyle \frac{n(\mathrm{HNO_3\, (aq)})}{n(\mathrm{CuO\, (s)})} = \frac{2}{1} = 2[/tex].
Therefore:
[tex]\begin{aligned}&n(\text{$\mathrm{HNO_3\, (aq)}$, consumed (under assumption)})\\ &= \frac{n(\text{$\mathrm{HNO_3\, (aq)}$, consumed})}{n(\mathrm{CuO\, (s)})}\cdot n(\mathrm{CuO\, (s)}) \\ &\approx 2 \times 0.088001\; \rm mol \approx 0.17600\; \rm mol\end{aligned}[/tex].
On the other hand, how many moles of [tex]\rm HNO_3\, (aq)[/tex] are actually available?
Convert the volume of that [tex]\rm HNO_3\, (aq)[/tex] solution to the standard unit (liter.)
[tex]V(\rm HNO_3\, (aq)) = 50\; \rm mL = 0.050\; \rm L[/tex].
Calculate the number of moles of [tex]\rm HNO_3\, (aq)[/tex] in that [tex]0.20\; \rm M[/tex] solution:
[tex]n({\rm HNO_3\, (aq)}) = c\cdot V = 0.050\; \rm L \times 0.20\; \rm mol \cdot L^{-1} = 0.010\; \rm mol[/tex].
Apparently, the quantity of [tex]\rm HNO_3\, (aq)[/tex] required exceeded the quantity that is available. Therefore, the assumption is invalid, and [tex]\rm CuO[/tex] cannot be the limiting reactant. At the same time,
Mass of the reactant in excess
Since it is now known that all that [tex]0.010\; \rm mol[/tex] of [tex]\rm HNO_3\, (aq)[/tex] will be consumed, apply that coefficient ratio again to obtain the quantity of [tex]\rm CuO[/tex] consumed in this reaction:
[tex]\begin{aligned}&n(\text{$\mathrm{CuO}$, consumed})\\ &= n(\text{$\mathrm{HNO_3\, (aq)}$, consumed}) \left/\frac{n(\text{$\mathrm{HNO_3\, (aq)}$, consumed})}{n(\mathrm{CuO\, (s)})}\right. \\ &\approx (0.010 \; \rm mol) / 2 \approx 0.0050\; \rm mol\end{aligned}[/tex].
It was already shown that the formula mass of [tex]\rm CuO[/tex] is (approximately) [tex]79.545\; \rm g \cdot mol^{-1}[/tex]. Therefore, the mass of that [tex]0.0050\; \rm mol[/tex] formula units of [tex]\rm CuO\![/tex] would be:
[tex]\begin{aligned}& m(\text{$\rm CuO$, consumed}) \\&= n \cdot M \approx 0.0050\; \rm mol \times 79.545\; \rm g\cdot mol^{-1} \\&\approx 0.39773\; \rm g\end{aligned}[/tex].
Before the reaction, [tex]7.0\; \rm g[/tex] of [tex]\rm CuO[/tex] is available. Therefore, all that [tex]7.0\; \rm g - 0.39773\; \rm g \approx 6.6\; \rm g[/tex] of [tex]\rm CuO\![/tex] would be in excess.
Percentage Yield
Similarly:
[tex]\displaystyle \frac{n(\mathrm{HNO_3\, (aq)})}{n(\mathrm{Cu(NO_3)_2\, (aq}))} = \frac{2}{1} = 2[/tex].
Apply this ratio to find the theoretical yield of [tex]\rm Cu(NO_3)_2[/tex]:
[tex]n(\text{$\mathrm{Cu(NO_3)_2\, (aq)}$, theoretical yield}) \approx (0.010 \; \rm mol) / 2 \approx 0.0050\; \rm mol[/tex].
Find the mass of that [tex]0.0050\; \rm mol[/tex] of [tex]\rm Cu(NO_3)_2[/tex] formula units using its formula mass:
[tex]m(\text{$\rm Cu(NO_3)_2\, (aq)$, theoretical yield}) \approx 0.93777\; \rm g[/tex].
Calculate the percentage yield given that the actual yield is [tex]0.85\; \rm g[/tex]:
[tex]\begin{aligned}&\text{Percentage Yield} \\ &= \frac{\text{Actual Yield}}{\text{Theoretical Yield}}\times 100\% \\ &= \frac{0.85\; \rm g}{0.93777\; \rm g} \times 100\% \approx 0.91\% \end{aligned}[/tex].
(Rounded to two significant figures.)
(c) The limiting reactant is HNO₃
(d) The mass of the excess reactant after the reaction is approximately 6.6 grams
(e) The percentage yield of copper (II) nitrate from the reaction is approximately 90.64%
The reason the above values are the correct values is as follows;
The given parameters are;
The mass of copper(II)oxide in the reaction = 7.0 g
The volume of the 0.20 M nitric acid, HNO₃ = 50 mL
(c) Concentration of the reactants
The molar mass of CuO = 79.545 g/mol
Number of moles = Mass/(Molar mass)
The number of moles of CuO = (7 g)/79.545 g/mol ≈ 0.088 moles
50 mL of 0.20 M HNO₃, contains 50/1000 × 0.2 = 0.01 moles of HNO₃
The chemical equation for the reaction is CuO + 2HNO₃ → Cu(NO₃)₂ + H₂O
Therefore;
One mole of CuO reacts with two moles of HNO₃ to produce one mole of Cu(NO₃)₂ and one mole of H₂O
Therefore, 0.088 moles of CuO reacts with 2 × 0.088 = 0.176 moles of HNO₃
Given that there is only 0.01 moles of HNO₃, the limiting reactant is the HNO₃, which is not enough to completely react with the CuO which is the excess reactant
(d) The mass of the CuO that reacts with the 0.01 moles of HNO₃ is given as follows;
1 mole of CuO reacts with 2 moles HNO₃
0.01 moles of HNO₃ will react with 0.01/2 = 0.005 moles of CuO
Mass = Number of moles × Molar mass
The mass of 0.005 moles of CuO = 0.005 moles × 79.545 g/mol = 0.397725 grams
The mass of the CuO left = Initial mass - Reacting mass
∴ The mass of the CuO left = 7 grams - 0.397725 grams = 6.602275 grams
The mass of the excess reactant (CuO) after the reaction ≈ 6.6 grams
(e) The theoretical number of moles of copper (II) nitrate, Cu(NO₃)₂ produced = Half the number of moles of HNO₃ in the reaction
The number of moles of HNO₃ in the reaction = 0.01 moles
∴ The theoretical number of moles of copper (II) nitrate, Cu(NO₃)₂ produced = (1/2) × 0.01 moles = 0.005 moles
The molar mass of Cu(NO₃)₂ = 187.56 g/mol
The theoretical mass of Cu(NO₃)₂ produced = 0.005 moles × 187.56 g/mol = 0.9378 grams
The actual yield of copper (II) nitrate is 0.84 g
[tex]Percentage \ yield = \mathbf{\dfrac{Actual \ yield}{Theoretical \ yield} \times 100}[/tex]
Therefore;
[tex]\% \ yield \ of \ Cu(NO_3)_2 = \dfrac{0.85 \, g}{0.9378 \, g} \times 100 \approx 90.64 \%[/tex]
The percentage yield of copper (II) nitrate, %yield ≈ 90.64%
Learn more about percentage yield from chemical reactions here:
https://brainly.com/question/15443303