Answer: (a) BE = 1.112 MeV
(b) BE = 7.074 MeV
(c) BE = 7.767 MeV
(d) BE = 8.112 MeV
Explanation: Binding energy per nucleon is the average energy necessary to remove a proton or a neutron from the nucleus of an atom. It is mathematically defined as:
[tex]BE = \frac{\Delta m.c^{2}}{A}[/tex]
Where
Δm is a difference in mass known as mass defect
A is atomic mass of an atom.
Mass Defect is determined by:
[tex]\Delta m =Zm_{p}+(A-Z)m_{n} - m_{nuc}[/tex]
where:
Z is atomic number
[tex]m_{p}[/tex] is mass of proton
[tex]m_{n}[/tex] is mass of neutron
[tex]m_{nuc}[/tex] is mass of the nucleus
Mass of proton is 1.007825u.
Mass of neutron is 1.008665u.
The unit u is equal to 931.5MeV/c².
(a) 2H(deuterion): Given: Z = 1; A = 2; [tex]m_{nuc}[/tex] = 2.014102u
[tex]\Delta m =1(1.007825)+1(1.008665) -2.014102[/tex]
[tex]\Delta m =0.002388u[/tex]
[tex]BE = \frac{0.002388.c^{2}}{2}.931.5\frac{MeV}{c^{2}}[/tex]
BE = 1.112MeV
(b) 4He (Helium): Given: Z = 2; A = 4; [tex]m_{nuc}[/tex] = 4.002603
[tex]\Delta m =2(1.007825)+2(1.008665) -4.002603[/tex]
[tex]\Delta m =0.030377u[/tex]
[tex]BE = \frac{0.030377.c^{2}}{4}.931.5\frac{MeV}{c^{2}}[/tex]
BE = 7.074MeV
(c) 18O (Oxygen): Given: Z = 8; A = 18; [tex]m_{nuc}[/tex] = 17.999160
[tex]\Delta m =8(1.007825)+10(1.008665) -17.999160[/tex]
[tex]\Delta m =0.15009u[/tex]
[tex]BE = \frac{0.15009.c^{2}}{18}.931.5\frac{MeV}{c^{2}}[/tex]
BE = 7.767MeV
(d) 23Na (Sodium): Given: Z = 11; A = 23; [tex]m_{nuc}[/tex] = 22.989767
[tex]\Delta m =11(1.007825)+12(1.008665) -22.989767[/tex]
[tex]\Delta m =0.200288u[/tex]
[tex]BE = \frac{0.200288.c^{2}}{23}.931.5\frac{MeV}{c^{2}}[/tex]
BE = 8.112MeV