Answer:
a) Equation of the tangent of the parabola
12 x - y -16=0
b)
slope of the tangent at x=2.1
[tex](\frac{dy}{dx}) = 3(2.1)^{2} = 13.23[/tex]
slope of the tangent at x=2.01
[tex](\frac{dy}{dx}) = 3(2.01)^{2} = 12.1203[/tex]
Step-by-step explanation:
Step(i):-
Given parabola y = x³ ....(i)
Differentiating equation (i) with respective to 'x'
[tex]\frac{dy}{dx} = 3x^{2}[/tex]
slope of the tangent
[tex](\frac{dy}{dx})_{(2,8)} = 3x^{2} = 3(2)^{2} =12[/tex]
Step(ii):-
Equation of the tangent of the parabola
[tex]y-y_{1} = m (x-x_{1} )[/tex]
y-8 = 12 (x -2)
12 x - 24 -y +8 =0
12 x - y -16=0
b)
slope of the tangent at x=2.1
[tex](\frac{dy}{dx}) = 3(2.1)^{2} = 13.23[/tex]
slope of the tangent at x=2.01
[tex](\frac{dy}{dx}) = 3(2.01)^{2} = 12.1203[/tex]