You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.0dB . So you decide to move closer to give the conversation a sound level of 80.0dB instead. How close should you come?

Respuesta :

Answer:

The distance is [tex]r_2  =  0.24 \  m[/tex]

Explanation:

From the question we are told that

       The  distance from the conversation is [tex] r_1    =  24.0 \ m[/tex]

       The  intensity of  the sound at your position is  [tex]\beta _1 =  40 dB[/tex]

        The  intensity at the sound at the new position is  [tex]\beta_2 =  80.0dB[/tex]

Generally the intensity in  decibel is  is mathematically represented as

      [tex]\beta  =  10dB log_{10}[\frac{d}{d_o} ][/tex]

The intensity is  also mathematically represented as

      [tex]d =  \frac{P}{A}[/tex]

So

    [tex]\beta  =  10dB *  log_{10}[\frac{P}{A* d_o} ][/tex]

=>   [tex]\frac{\beta}{10}  =  log_{10} [\frac{P}{A (l_o)} ][/tex]

From the logarithm definition

=>    [tex]\frac{P}{A  *  d_o}  =  10^{\frac{\beta}{10} }[/tex]

=>      [tex]P =  A (d_o ) [10^{\frac{\beta }{ 10} } ][/tex]

Here P is the power of the sound wave

 and  A is the cross-sectional area of the sound wave  which is generally in spherical form

Now the power of the sound wave at the first position is mathematically represented as

               [tex]P_1 =  A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ][/tex]

Now the power of the sound wave at the second  position is mathematically represented as

               [tex]P_2 =  A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ][/tex]

Generally  power of the wave is constant at both positions  so  

    [tex]A_1 (d_o ) [10^{\frac{\beta_1 }{ 10} } ]  = A_2 (d_o ) [10^{\frac{\beta_2 }{ 10} } ][/tex]

      [tex]4 \pi r_1 ^2   [10^{\frac{\beta_1 }{ 10} } ]  = 4 \pi r_2 ^2   [10^{\frac{\beta_2 }{ 10} } ][/tex]

        [tex]r_2 =  \sqrt{r_1 ^2 [\frac{10^{\frac{\beta_1}{10} }}{ 10^{\frac{\beta_2}{10} }} ]}[/tex]

       substituting value

        [tex]r_2 =   \sqrt{ 24^2 [\frac{10^{\frac{ 40}{10} }}{10^{\frac{80}{10} }} ]}[/tex]

        [tex]r_2  =  0.24 \  m[/tex]

     

ACCESS MORE
EDU ACCESS
Universidad de Mexico