please someone help me....

Answer: see proof below
Step-by-step explanation:
Use the following Product to Sum Identities:
2 sin A sin B = cos (A - B) - cos (A + B)
2 sin A cos B = sin (A + B) + sin (A - B)
Use the Unit Circle to evaluate: cos 120 = -1/2 & sin 60 = √3/2
Proof LHS → RHS
LHS: sin 20 · sin 40 · sin 80
Regroup: (1/2) sin 20 · 2 sin 40 · sin 80
Product to Sum Identity: (1/2) sin 20 [cos(80-40) - cos (80+40)]
Simplify: (1/2) sin 20 [cos 40 - cos 120]
Unit Circle: (1/2) sin 20 [cos 40 + (1/2)]
Distribute: (1/2) sin 20 cos 40 + (1/4) sin 20
Product to Sum Identity: (1/4)[sin(20 + 40) + sin (20 - 40)] + (1/4) sin 20
Simplify: (1/4)[sin 60 + sin (-20)] + (1/4) sin 20
= (1/4)[sin 60 - sin 20] + (1/4) sin 20
Unit Circle: (1/4)[(√3/2) - sin 20] + (1/4) sin 20
Distribute: (√3/8) - (1/4) sin 20 + (1/4) sin 20
Simplify: √3/8
LHS = RHS: √3/8 = √3/8 [tex]\checkmark[/tex]
We are given the equation cos(20°)(cos(40°)(cos(60°)(cos(80°) = √3 / 8. Let's once again start by applying the identity 'sin(s)sin(t) = - cos(s + t) + cos(s - t) / 2. In this case if we focus on the expression 'cos(20°)(cos(40°),' s would be = 20°, and t = 40°.
[tex]\mathrm{Use\:the\:following\:identity}:\quad \sin \left(s\right)\sin \left(t\right)=\frac{-\cos \left(s+t\right)+\cos \left(s-t\right)}{2}[/tex]
[tex]\sin \left(20^{\circ \:}\right)\sin \left(40^{\circ \:}\right)=\frac{-\cos \left(20^{\circ \:}+40^{\circ \:}\right)+\cos \left(20^{\circ \:}-40^{\circ \:}\right)}{2}[/tex]
[tex]\mathrm{Substitute}:\frac{-\cos \left(20^{\circ \:}+40^{\circ \:}\right)+\cos \left(20^{\circ \:}-40^{\circ \:}\right)}{2}\sin \left(80^{\circ \:}\right)[/tex]
[tex]\mathrm{Multiply\:fractions}:\frac{\sin \left(80^{\circ \:}\right)\left(-\cos \left(60^{\circ \:}\right)+\cos \left(-20^{\circ \:}\right)\right)}{2}[/tex]
Remember that cos(- x) = cos(x). Respectively cos(- 20°) = cos(20°). Let's substitute and afterwards apply the identity 'cos(60°) = 1 / 2.'
[tex]\frac{\sin \left(80^{\circ \:}\right)\left(-\cos \left(60^{\circ \:}\right)+\cos \left(20^{\circ \:}\right)\right)}{2} = \frac{\sin \left(80^{\circ \:}\right)\left(-\frac{1}{2}+\cos \left(20^{\circ \:}\right)\right)}{2}[/tex]
And if we further simplify the expression, we should receive the following...
[tex]\frac{\sin \left(80^{\circ \:}\right)\left(-1+2\cos \left(20^{\circ \:}\right)\right)}{4}[/tex]
Now we want to prove that this expression = √3 / 8. The denominator here is 4 so we can multiply the whole thing by 2 to have a denominator of 8. 2((sin(80°)(- 1 + 2cos(20°)) when simplified = √3. Therefore the expression is true.