Respuesta :

Answer:

  1. t = 5
  2. s = 8

Step-by-step explanation:

[tex]t \:\alpha\: \sqrt[3]{s} \\t = k\sqrt[3]{s} \:..........(1)\\\\t = 4, s = 64\\\\Substitute \:the \:values\:into \: equation\: 1\\4 = k\sqrt[3]{64} \\4 = 4k\\Divide \:both\:sides\:of\:the\:equation\:by\:4\\\frac{4}{4}= \frac{4k}{4} \\k = 1\\Substitute k \:for\:1 \:in\:equation\:1\\t = 1\sqrt[3]{s} \\t = \sqrt[3]{s} \:= Formula\:connecting\:t\:and\:s[/tex]

1.

[tex]t = ? , s=125\\\\t = \sqrt[3]{s} \\\\t = \sqrt[3]{125} \\\\t = 5[/tex]

2.

[tex]s = ? , t= 2\\\\t = \sqrt[3]{s} \\\\2 = \sqrt[3]{s} \\Cube\:both\:sides\:of\:the\:equation\\2^3 = \sqrt[3]{s} ^3\\\\8 =s\\s =8[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico