Answer:
Explanation:
Given that:
The argon atoms are excited into an excited state before emitting the 488.0 nm laser.
the energy of the first ionization energy of argon is 1520 kJ mol-1.
SInce 1 eV = 96.49 kJ/mol
Therefore, the energy of the first ionization energy of argon in eV is = ( 1520/ 96.49) eV
= 15.75 eV
To find where the energy level of the excited state lies below the vacuum energy level, let's first determine, the energy liberated by using planck expression.
[tex]E = \dfrac{hc}{\lambda}[/tex]
[tex]E = \dfrac{6.6 \times 10^{-34} \times 3 \times 10^8}{488 \times 10^{-9}}[/tex]
[tex]E = \dfrac{1.98 \times 10^{-25}}{488 \times 10^{-9}}[/tex]
[tex]E = \dfrac{1.98 \times 10^{-25}}{488 \times 10^{-9}}[/tex]
[tex]E =4.057 \times 10^{-19} \ J[/tex]
Converting Joules (J) to eV ; we get,
[tex]E =\dfrac{4.057 \times 10^{-19}}{1.6 \times 10^{-19}}[/tex]
E = 2.53 eV
The energy levels of the first exited state = -13.223 eV