Calculate the pressure drop over a 100m length due to friction when a slurry made from 1.0-mm silica particles is pumped through a horizontal 6-cm diameter pipeline (smooth pipe) at 2.5 m/s. The slurry contains 25 per cent silica by volume. The density of silica is 2700 kg/m3, rhow = 1000 kg/m3, μw = 0.001 kg/ms. Use a value of 82 for Ω. Drag coefficient for these particles,CD, may be taken as 0.44 .


For the slurry/Pipe system in question 1, estimate the deposition velocity.

Respuesta :

Answer:

The answer is "2.78".

Explanation:

Given values:

CD= 0.44

Formula:

[tex]\bold{f_r= \frac{v^{2}}{ g(s-1)D}}[/tex]

g=9.8

s= 2.7

D= 0.06

[tex]\to f_r=\frac{2.5^2}{9.8(2.7-1)0.06}\\\\[/tex]

        [tex]=\frac{2.5 \times 2.5}{9.8 \times 1.7 \times 0.06 }\\\\=\frac{6.25}{.9996 }\\\\=6.252501[/tex]

[tex]\phi = \frac{82\times v}{ \sqrt{cD} \times f_r^{-1.5}}\\\\[/tex]

   [tex]= \frac{82 \times 0.25 }{ \sqrt{0.44} \times 6.25^{1.5}}\\\\=2.4285\\[/tex]

[tex]\frac{\bigtriangleup P f_1 s_1}{L} = \frac{\bigtriangleup Pf_w}{L}(1+\phi)\\[/tex]

           [tex]=\frac{2fwSwv^2 (1+2.4285)}{D}\\\\[/tex]

[tex]Re= \frac{D \bar v Sw}{M_w}\\[/tex]

     [tex]=\frac{0.06 \times 2.5 \times 1000 }{0.001}\\\\=\frac{150 }{0.001}\\\\= 150 \times 10^{3}\\\\= 1.50 \times 10^{5}\\\\[/tex]

[tex]fw= 0.00389[/tex]

[tex]\to \frac{\bigtriangleup P f_1 s_1}{L}[/tex]

[tex]\to \frac{2 \times 0.00389 \times 1000 \times2.5^2 \times 3.4265}{0.06}\\\\\to 2.78[/tex]

ACCESS MORE