Answer:
The answer is "2.78".
Explanation:
Given values:
CD= 0.44
Formula:
[tex]\bold{f_r= \frac{v^{2}}{ g(s-1)D}}[/tex]
g=9.8
s= 2.7
D= 0.06
[tex]\to f_r=\frac{2.5^2}{9.8(2.7-1)0.06}\\\\[/tex]
[tex]=\frac{2.5 \times 2.5}{9.8 \times 1.7 \times 0.06 }\\\\=\frac{6.25}{.9996 }\\\\=6.252501[/tex]
[tex]\phi = \frac{82\times v}{ \sqrt{cD} \times f_r^{-1.5}}\\\\[/tex]
[tex]= \frac{82 \times 0.25 }{ \sqrt{0.44} \times 6.25^{1.5}}\\\\=2.4285\\[/tex]
[tex]\frac{\bigtriangleup P f_1 s_1}{L} = \frac{\bigtriangleup Pf_w}{L}(1+\phi)\\[/tex]
[tex]=\frac{2fwSwv^2 (1+2.4285)}{D}\\\\[/tex]
[tex]Re= \frac{D \bar v Sw}{M_w}\\[/tex]
[tex]=\frac{0.06 \times 2.5 \times 1000 }{0.001}\\\\=\frac{150 }{0.001}\\\\= 150 \times 10^{3}\\\\= 1.50 \times 10^{5}\\\\[/tex]
[tex]fw= 0.00389[/tex]
[tex]\to \frac{\bigtriangleup P f_1 s_1}{L}[/tex]
[tex]\to \frac{2 \times 0.00389 \times 1000 \times2.5^2 \times 3.4265}{0.06}\\\\\to 2.78[/tex]