Answer:
[tex]3\sin\theta+2\cos\theta=\dfrac{17}{5}[/tex]
Step-by-step explanation:
Given that,
The value of [tex]\tan\theta=\dfrac{3}{4}[/tex]
We know that, [tex]\tan\theta=\dfrac{\text{perpendicular}}{\text{base}}[/tex]
[tex]H^2=B^2+P^2[/tex]
H is hypotenuse
[tex]H^2=3^2+4^2\\\\H=5[/tex]
[tex]\sin\theta=\dfrac{P}{H}\\\\=\dfrac{3}{5}[/tex]
And, [tex]\cos\theta=\dfrac{B}{H}=\dfrac{4}{5}[/tex]
So,
[tex]3\sin\theta+2\cos\theta=3\times \dfrac{3}{5}+2\times \dfrac{4}{5}\\\\=\dfrac{9}{5}+\dfrac{8}{5}\\\\=\dfrac{17}{5}[/tex]
So, the value is 17/5.