what is the slope of the line shown below? (1,-4) (2,2)

Your question has been heard loud and clear.
Slope formula when two points are given= y2-y1/x2-x1
Here y2= 2
X2=2
Y1= -4
X1= -1
= 2-(-4)/2-(-1)= 2
Slope of line= 2
Thank you.
Answer:
[tex]\huge \boxed{\mathrm{B. \ 2}}[/tex]
Step-by-step explanation:
The line crosses two points.
The two points are (-1, -4) and (2, 2).
The slope of a line can be found through two points.
[tex]\displaystyle \sf slope = \frac{rise}{run}[/tex]
[tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]y_2=2 \\ y_1 = -4 \\ x_2=2 \\ x_1=-1[/tex]
Plug in the values and evaluate.
[tex]\displaystyle m=\frac{2-(-4)}{2-(-1)}[/tex]
[tex]\displaystyle m=\frac{2+4}{2+1}[/tex]
[tex]\displaystyle m=\frac{6}{3}[/tex]
[tex]m=2[/tex]
The slope of the line is 2.