Answer:
y = [tex]\frac{16}{3}x-79[/tex]
Step-by-step explanation:
From the given table,
Two points are (1, 15) and (7, 47)
If the two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are lying on a line then slope 'm' of the line will be,
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{47-15}{7-1}[/tex]
= [tex]\frac{32}{6}[/tex]
= [tex]\frac{16}{3}[/tex]
Let the equation of a line passing through (h, k) is,
y - h = m(x - k)
If the line passes through (1, 15)
y - 1 = [tex]\frac{16}{3}(x-15)[/tex]
y = [tex]\frac{16}{3}x-\frac{16}{3}(15)+1[/tex]
y = [tex]\frac{16}{3}x-80+1[/tex]
y = [tex]\frac{16}{3}x-79[/tex]