Respuesta :
Answer:
Value = 1.80 g/cm³ (Approx)
Explanation:
Given:
[tex]\frac{3.39 \times 10^7g}{(\frac{4}{3} )(3.1416)(1.65 \times 10^2 cm)^3}[/tex]
Computation:
[tex]\frac{3.39 \times 10^7g}{(\frac{4}{3} )(3.1416)(1.65 \times 10^2 cm)^3} \\\\\frac{3.39 \times 10^7g}{(\frac{4}{3} )(3.1416)(4.492125 \times 10^6 cm^3)} \\\\ \frac{3.39 \times 10^7g}{(\frac{4}{3} )(3.1416)(4.492125 \times 10^6 cm^3)}\\\\ \frac{3.39 \times 10^7g}{18.8166132\times 10^6 cm^3} \\\\ 1.80159945g/cm^3[/tex]
Value = 1.80 g/cm³ (Approx)
The density has been calculated by computing the equation as [tex]\rm 1.802\;g/cm^3[/tex].
The calculation has been performed for density, as it has been performed for mass per unit volume.
The calculations can be performed as:
[tex]\rm \implies \dfrac{3.39\;\times\;10^7\;g}{\frac{4}{3}\;\times\;(3.1416)\;(1.65\;\times\;10^2)^3\;cm^3 } \\\implies \dfrac{3.39\;\times\;10^7\;g}{\frac{4}{3}\;\times\;(3.1416)\;(4.49\;\times\;10^6)\;cm^3 }\\\implies \dfrac{3.39\;\times\;10^7\;g}{\frac{4}{3}\;\times\;14.1124\;\times\;10^6\;cm^3 }\\[/tex]
The equation has been further simplified for density as:
[tex]\rm \implies \dfrac{3.39\;\times\;10^7\;g}{18.811\;\times\;10^6\;cm^3 } \\\implies 1.802\;g/cm^3[/tex]
The density has been calculated by computing the equation as [tex]\rm 1.802\;g/cm^3[/tex].
For more information about rounding units, refer to the link:
https://brainly.com/question/3808339