Answer:
(See explanation below for further details)
Step-by-step explanation:
A second order polynomial (quadratic function) can be well represented with at least three distinct points. Let is take five equidistant different points:
x = 0
[tex]f(0) = 3\cdot (0)^{2}-8\cdot (0) +2[/tex]
[tex]f(0) = 2[/tex]
x = 1
[tex]f(1) = 3\cdot (1)^{2}-8\cdot (1)+2[/tex]
[tex]f(1) = -3[/tex]
x = 2
[tex]f(2) = 3\cdot (2)^{2}-8\cdot (2)+2[/tex]
[tex]f(2) = -2[/tex]
x = 3
[tex]f(3) = 3\cdot (3)^{2}-8\cdot (3)+2[/tex]
[tex]f(3) = 5[/tex]
x = 4
[tex]f(4) = 3\cdot (4)^{2}-8\cdot (4) + 2[/tex]
[tex]f(4) = 18[/tex]
The table of points from the equation [tex]f(x) = 3\cdot x^{2}-8\cdot x +2[/tex] is:
[tex]x[/tex] [tex]f(x)[/tex]
0 2
1 -3
2 -2
3 5
4 18
A graphic of the given function is included below as attachment.