Respuesta :

Answer:

(See explanation below for further details)

Step-by-step explanation:

A second order polynomial (quadratic function) can be well represented with at least three distinct points. Let is take five equidistant different points:

x = 0

[tex]f(0) = 3\cdot (0)^{2}-8\cdot (0) +2[/tex]

[tex]f(0) = 2[/tex]

x = 1

[tex]f(1) = 3\cdot (1)^{2}-8\cdot (1)+2[/tex]

[tex]f(1) = -3[/tex]

x = 2

[tex]f(2) = 3\cdot (2)^{2}-8\cdot (2)+2[/tex]

[tex]f(2) = -2[/tex]

x = 3

[tex]f(3) = 3\cdot (3)^{2}-8\cdot (3)+2[/tex]

[tex]f(3) = 5[/tex]

x = 4

[tex]f(4) = 3\cdot (4)^{2}-8\cdot (4) + 2[/tex]

[tex]f(4) = 18[/tex]

The table of points from the equation [tex]f(x) = 3\cdot x^{2}-8\cdot x +2[/tex] is:

          [tex]x[/tex]                            [tex]f(x)[/tex]

          0                             2

          1                             -3

          2                            -2

          3                             5

          4                             18

A graphic of the given function is included below as attachment.

Ver imagen xero099
ACCESS MORE