Answer:
The question is incomplete. The complete table is:
Score in percent (X): 80, 75, 70, 90, 95, 100, 75, 60, 75, 95
Time in minute (Y) : 45, 48, 40, 50, 40, 30, 30, 39, 38, 55
The answer is 0.55 %
Step-by-step explanation:
ΣX = 815
ΣY = 425
ΣX x Y = 34565
Σ = 67925
Σ[tex]$Y^2$[/tex] = 18699
So, correlation coefficient, b
[tex]$b= \frac{n \Sigma XY- \Sigma X \Sigma Y}{\sqrt{n \Sigma X^2-( \Sigma X)^2} \times \sqrt{(n \Sigma Y^2 -(\Sigma Y)^2}}$[/tex]
[tex]$b = \frac{(10 \times 34565)-(815 \times 425)}{\sqrt{(10 \times 67925)-(815)^2} \times \sqrt{(10 \times 10699)-(425)^2}}$[/tex]
[tex]$b= -\frac{725}{9779 \times 2702}$[/tex]
b = -0.0741
Correlation Determination:
[tex]$B^2 = (-0.0741)^2$[/tex]
= = 0.0055 = 0.55%
Therefore, 0.55 percentage of the variation in y can be explained by x variable.