Respuesta :

Answer:

[tex]\large\boxed{y=-\frac{3}{2}x+\frac{3}{2}}[/tex]

Step-by-step explanation:

Use the two-points slope equation: [tex]\boxed{m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}[/tex]

Given the two coordinate points of [tex](x_{1}, y_{1})[/tex] and [tex](x_{2}, y_{2})[/tex], implement these values into the equation and solve for m.

[tex]m=\frac{(3)-(6)}{(-1)-(-3)}\\\\m=\frac{(-3)}{(2)}\\\\m=-\frac{3}{2}[/tex]

The slope is then placed in the equation - y = -3/2x + b.

Then, insert a value for y and x from the same coordinate point to solve for b.

[tex]6=-\frac{3}{2}(-3)+b\\\\6=\frac{9}{2}+b\\\\\frac{3}{2}=b[/tex]

Then, plug it all in to get [tex]\large\boxed{y=-\frac{3}{2}x+\frac{3}{2}}[/tex].

Answer:

y=-3/2x  

Step-by-step explanation:

First, find the slope with y2-y1/x2-x1=m

3-6                      m=-3/2

--------- =

-1-+-3

Now plug it in to point slope form

Point slope form is y-y1=m(x-x1)

y-3=-3/2(x--1)       Distribute -3/2 to x and 1

y-3=-3/2x-3         Add three on both sides to get y alone

y=-3/2x                Three's cancel out. This is the final equation.

ACCESS MORE