Respuesta :

Looks like the equation is

[tex]x^7y+y^7x=7[/tex]

Differentiate both sides with respect to [tex]x[/tex], taking [tex]y[/tex] to be a function of [tex]x[/tex].

[tex]\dfrac{\mathrm d[x^7y+y^7x]}{\mathrm dx}=\dfrac{\mathrm d[7]}{\mathrm dx}[/tex]

[tex]\dfrac{\mathrm d[x^7]}{\mathrm dx}y+x^7\dfrac{\mathrm dy}{\mathrm dx}+\dfrac{\mathrm d[y^7]}{\mathrm dx}x+y^7\dfrac{\mathrm dx}{\mathrm dx}=0[/tex]

[tex]7x^6y+x^7\dfrac{\mathrm dy}{\mathrm dx}+7y^6x\dfrac{\mathrm dy}{\mathrm dx}+y^7=0[/tex]

Solve for [tex]\frac{\mathrm dy}{\mathrm dx}[/tex]:

[tex](x^7+7y^6)\dfrac{\mathrm dy}{\mathrm dx}=-(7x^6y+y^7)[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{7x^6y+y^7}{x^7+7y^6}[/tex]

ACCESS MORE
EDU ACCESS