The parabola $y = ax^2 + bx + c$ is graphed below. Find $a+b+c$. (The grid lines are one unit apart.)

If [tex]x=0[/tex], then [tex]y=a\cdot0^2+b\cdot0+c=5[/tex], so [tex]c=5[/tex].
If [tex]x=1[/tex], then [tex]y=a\cdot1^2+b\cdot1+c=2[/tex], so [tex]a+b+5=2[/tex] or [tex]a+b=-3[/tex].
If [tex]x=2[/tex], then [tex]y=a\cdot2^2+b\cdot2+c=1[/tex], so [tex]4a+2b+5=1[/tex] or [tex]2a+b=-2[/tex].
We have
[tex]a+b=-3\implies -a-b=3[/tex]
[tex](2a+b)+(-a-b)=-2+3[/tex]
[tex]\implies a=1\implies b=-4[/tex]
So we end up with
[tex]a+b+c=1+(-4)+5=\boxed{2}[/tex]