Respuesta :
Answer:
x = 7.45 inch for the maximum volume.
The area of the square = x² = 7.45² = 55.5025 inch²
Step-by-step explanation:
From the given information:
An open-top box is to be made from a 42-inch by 48-inch piece of plastic by removing a square from each corner of the plastic and folding up the flaps on each side.
The objective is to determine the length of the side x of the square cut out of each corner to get a box with the maximum volume
The volume of the box = l×b×h
The volume of the box = [tex](42 - 2x) \times (48-2x) \times (x)[/tex]
The volume of the box = [tex](2016 - 84x - 96x +4x^2)x[/tex]
The volume of the box = [tex](2016 -180x+4x^2)x[/tex]
The volume of the box = [tex](2016x -180x^2+4x^3)[/tex]
The volume of the box = [tex]4x^3 - 180x^2 +2016x[/tex]
For the maximum volume V' = 0
V' = [tex]12x^2 - 360x + 2016[/tex]
Using the quadratic formula; we have:
[tex]= \dfrac{-b \pm \sqrt{b^2 -4ac}}{2a}[/tex]
where;
a = 12 , b = -360 c = 2016
[tex]= \dfrac{-(-360) \pm \sqrt{(-360)^2 -4(12)(2016)}}{2(12)}[/tex]
[tex]= \dfrac{360 \pm \sqrt{129600 -96768}}{24}[/tex]
[tex]= \dfrac{360 \pm \sqrt{32832}}{24}[/tex]
[tex]= \dfrac{360 \pm 181.196}{24}[/tex]
[tex]= \dfrac{360 + 181.196}{24} \ \ \ OR \ \ \ \dfrac{360 - 181.196}{24}[/tex]
[tex]= \dfrac{541.196}{24} \ \ \ OR \ \ \ \dfrac{178.804}{24}[/tex]
[tex]= 22.55 \ \ \ OR \ \ \ 7.45[/tex]
For the maximum value , we check the points in the second derivative term
V'' = 24x - 360
V'' ( 22.55) = 24(22.55) - 360
V'' ( 22.55) = 541.2 - 360
V'' ( 22.55) = 181.2 (minimum)
V'' ( 7.45) = 24(7.45) - 360
V'' ( 7.45) = 178.8 - 360
V'' ( 7.45) = -181.2 < 0 (maximum)
Therefore, x = 7.45 inch for the maximum volume.
The area of the square = x² = 7.45² = 55.5025 inch²
The maximum volume of a box is the highest volume the box can take.
The side length that ensures maximum volume is 22.55 inches or 7.45 inches.
The dimension of the plastic is:
[tex]\mathbf{Length = 42}[/tex]
[tex]\mathbf{Width = 48}[/tex]
Assume the side length cut-out is x
So, the dimension of the box is:
[tex]\mathbf{Length = 42 - 2x}[/tex]
[tex]\mathbf{Width = 48 - 2x}[/tex]
[tex]\mathbf{Height = x}[/tex]
So, the volume of the box is:
[tex]\mathbf{Volume = Length \times Width \times Height}[/tex]
This gives;
[tex]\mathbf{Volume = (42 - 2x) \times (48 - 2x) \times x}[/tex]
Expand
[tex]\mathbf{Volume = (42 - 2x) \times (48x - 2x^2)}[/tex]
Expand
[tex]\mathbf{Volume = 2016x - 96x^2 - 84x^2 + 4x^3}[/tex]
Differentiate
[tex]\mathbf{V' = 2016 - 192x - 168x + 12x^2}[/tex]
[tex]\mathbf{V' = 2016 -360x + 12x^2}[/tex]
Rewrite as:
[tex]\mathbf{V' = 12x^2 -360x + 2016}[/tex]
Set to 0
[tex]\mathbf{12x^2 -360x + 2016 = 0}[/tex]
Divide through by 12
[tex]\mathbf{x^2 -30x + 168 = 0}[/tex]
Using a calculator, the values of x are:
[tex]\mathbf{x = 22.55\ or\ x = 7.45}[/tex] ------ approximated to 2 decimal places
Hence, the side length that ensures maximum volume is 22.55 inches or 7.45 inches.
Read more about maximizing volumes at:
https://brainly.com/question/11599887