Respuesta :
Answer:
A. [tex]\mathtt{\dfrac{dA}{dt}|_{t=2}=644.15}[/tex]
B. [tex]\mathtt{\dfrac{dA}{dt}|_{t = 5.79}= 839.86 }[/tex]
Step-by-step explanation:
Given that:
An investment of Amount = $8000
earns at an annual rate of interest = 7% = 0.07 compounded continuously
The objective is to :
A) Find the instantaneous rate of change of the amount in the account after 2 year(s).
we all know that:
[tex]A = Pe^{rt}[/tex]
where;
[tex]A = (8000) \ e ^{0.7t}[/tex]
The instantaneous rate of change = [tex]\dfrac{dA}{dt}[/tex]
[tex]\dfrac{dA}{dt} = \dfrac{d}{dt}(8000 \ e ^{0.07t} )[/tex]
[tex]= 8000 \dfrac{d}{dt}e^{0.07 \ t}[/tex]
[tex]\dfrac{dA}{dt}= 8000 (0.07)e^{0.07 \ t}[/tex]
[tex]\dfrac{dA}{dt}= 560 e^{0.07 \ t}[/tex]
At t = 2 years; the instantaneous rate of change is:
[tex]\dfrac{dA}{dt}|_{t=2}= 560 e^{0.07 \times 2}[/tex]
[tex]\mathtt{\dfrac{dA}{dt}|_{t=2}=644.15}[/tex]
(B) Find the instantaneous rate of change of the amount in the account at the time the amount is equal to $12,000.
Here the amount = 12000
[tex]12000 = (8000)e^{0.07 \ t}[/tex]
[tex]\dfrac{12000 }{8000}= e^{0.07 \ t}[/tex]
[tex]1.5= e^{0.07 \ t}[/tex]
㏑(1.5) = 0.07 t
0.405465 = 0.07 t
t = 0.405465 /0.07
t = 5.79
[tex]\dfrac{dA}{dt}= 560 e^{0.07 \ t}[/tex]
At t = 5.79
[tex]\dfrac{dA}{dt}|_{t = 5.79}= 560 e^{0.07 \times 5.79}[/tex]
[tex]\mathtt{\dfrac{dA}{dt}|_{t = 5.79}= 839.86 }[/tex]