Respuesta :
Answer:
B A and C
Explanation:
Given:
Specimen σ[tex]_{max}[/tex] σ[tex]_{min}[/tex]
A +450 -150
B +300 -300
C +500 -200
Solution:
Compute the mean stress
σ[tex]_{m}[/tex] = (σ[tex]_{max}[/tex] + σ[tex]_{min}[/tex])/2
σ[tex]_{mA}[/tex] = (450 + (-150)) / 2
= (450 - 150) / 2
= 300/2
σ[tex]_{mA}[/tex] = 150 MPa
σ[tex]_{mB}[/tex] = (300 + (-300))/2
= (300 - 300) / 2
= 0/2
σ[tex]_{mB}[/tex] = 0 MPa
σ[tex]_{mC}[/tex] = (500 + (-200))/2
= (500 - 200) / 2
= 300/2
σ[tex]_{mC}[/tex] = 150 MPa
Compute stress amplitude:
σ[tex]_{a}[/tex] = (σ[tex]_{max}[/tex] - σ[tex]_{min}[/tex])/2
σ[tex]_{aA}[/tex] = (450 - (-150)) / 2
= (450 + 150) / 2
= 600/2
σ[tex]_{aA}[/tex] = 300 MPa
σ[tex]_{aB}[/tex] = (300- (-300)) / 2
= (300 + 300) / 2
= 600/2
σ[tex]_{aB}[/tex] = 300 MPa
σ[tex]_{aC}[/tex] = (500 - (-200))/2
= (500 + 200) / 2
= 700 / 2
σ[tex]_{aC}[/tex] = 350 MPa
From the above results it is concluded that the longest fatigue lifetime is of specimen B because it has the minimum mean stress.
Next, the specimen A has the fatigue lifetime which is shorter than B but longer than specimen C.
In the last comes specimen C which has the shortest fatigue lifetime because it has the higher mean stress and highest stress amplitude.